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ABSTRACT

In this paper, we study the structure and algebraic varieties of associative trialgebras. In particular, we
classify all associative trialgebras of dimension at most four over a field of characteristic zero. Based on
this classification, we provide a detailed analysis of their derivations and centroids. We also investigate
the role of centroids in the structural theory of associative trialgebras and compute them explicitly for
each isomorphism class in low dimensions. All computations are performed using symbolic computation
software such as Mathematica. These results offer new insights into the algebraic and geometric aspects of
associative trialgebras.
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1 Introduction

Associative trialgebras, also known as triassociative algebras and denoted as (7, L, ,F),
were first introduced by Loday and Ronco in 2001 (see [9]). These algebras extend the
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scope of Loday’s associative dialgebras (diassociative algebras), as explored in the foun-
dational works [2, 8, 10, 20]. Characterized by a vector space and three binary operations
satisfying eleven defining relations, associative trialgebras have emerged as a rich field of
study in the broader landscape of non-associative algebraic structures.

The classification of algebraic structures [1, 4, 17], including dialgebras and trialgebras
[8, 20, 21], as well as Hom-type and BiHom-type generalizations [11, 13, 14, 22|, has
become a central focus in recent mathematical research. Derivations and centroids serve
as crucial tools in the structural study of these algebras, offering deep insights into their
internal symmetries and automorphism behaviors [6, 7, 15, 18]. These concepts not only
contribute to pure algebra but also find applications in geometry and physics.

Recent developments in generalized and Hom-type algebraic frameworks have introduced
new avenues for studying algebraic deformations, such as Hom-associative and Hom-
trialgebra structures [3, 11, 12, 16], and their corresponding derivations and centroids
[2, 13, 22, 23]. The role of Rota-Baxter relations, bimodule constructions, and Hom-
Poisson structures is further emphasized in [2, 3, 12], highlighting the interplay between
algebraic operations and homomorphisms in modern generalizations.

Let 7 be an n-dimensional K-linear space with a basis {ej, es,...,e,}. The triassociative
structure on 7, characterized by the product operations «,d, and &, is governed by 3n>
structure constants 'yfj, 6%, and ffj This structure is defined through the equations e; -

5
n

n n

ej = Z’yfjek, e e = Zéfjek, and e; Le; = Zéfjek. Ensuring the triassociative and
k=1 k=1 k=1

unital properties gives rise to the sub-variety 7; of K3".

Changes in 7T result in a natural transport of the structure action of GL,(K) on Ty, es-
tablishing a one-to-one correspondence between isomorphism classes of n-dimensional al-
gebras and the orbits of the action of GL,(K) on T;. The role of centroids in classification
problems and various areas of algebraic structure theory is well-established [6, 7, 15, 18].
Similar approaches have been applied in the classification of low-dimensional Leibniz alge-
bras and their derivations [19], as well as in Zinbiel algebras [4] and BiHom-superdialgebras
[14].

This paper aims to introduce and classify derivations and centroids specifically within
the context of associative trialgebras, building on earlier classifications of low-dimensional
dialgebras [5, 8, 20] and utilizing computational techniques inspired by [1, 17, 16].

The paper is organized into several sections, each contributing to the understanding and
classification of associative trialgebras. In the first section, we provide an introduction
to the subject and highlight previously obtained results. Section 2 lays down the basic
concepts essential for the ensuing study.

Section 3 delves into the algebraic varieties of associative trialgebras, offering classifica-
tions of two-dimensional, three-dimensional, and four-dimensional trialgebras up to iso-
morphism. The comprehensive analysis includes the revelation that any 2-dimensional
associative trialgebra is isomorphic to one of 8 possible associative trialgebras. Similarly,
we demonstrate that 3-dimensional associative trialgebras are isomorphic to one of the 12
possible non-isomorphic associative trialgebras, and 4-dimensional associative trialgebras
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are isomorphic to one of 16 possible associative trialgebras. Our meticulous classification
involves solving structure constant equations with the aid of computer algebra software,
as also adopted in works like [1, 16].

In Section 4, we present the classification of derivations, revealing 5 non-isomorphic deriva-
tions of two-dimensional associative trialgebras, 8 non-isomorphic derivations of three-
dimensional associative trialgebras, and 16 non-isomorphic derivations of four-dimensional
associative trialgebras, with dimensions ranging from 0 to 6. Our approach is influenced
by methods used in earlier investigations of derivations in Hom-algebraic and dialgebraic
settings [2, 3, 21, 22].

Finally, in Section 5, we delve into the classification of centroids. Our evaluation uncov-
ers that the centroids of 2-dimensional associative trialgebras are isomorphic to each of
the 8 non-isomorphic classes, each with a dimension of one. Similarly, the centroids of 3-
dimensional associative trialgebras are isomorphic to each of the 12 non-isomorphic classes,
with dimensions ranging from 1 to 5. Moreover, in the classification of 4-dimensional asso-
ciative trialgebras and derivations, we identify 16 non-isomorphic centroids of associative
trialgebras, with dimensions in the range of 1 to 7.

It is important to note that the concept of derivations and centroids in this context draws
inspiration from that of finite-dimensional algebras [7, 18]. This study focuses specifically
on the derivations and centroids of finite-dimensional associative trialgebras, showcasing
their significance in algebraic and geometric classification problems of algebras. Utilizing
the classification results of associative trialgebras, we provide a comprehensive description
of derivations and centroids for two, three, and four-dimensional associative trialgebras.
All algebras and vector spaces considered are assumed to be over a field K of character-
istic zero. Our results significantly contribute to the understanding of the structure and
properties of associative trialgebras, paving the way for future research in this intriguing
area.

2  Preliminaries

Definition 2.1. [9] An associative dialgebra is a vector space D equipped with two binary
operations : 1 called left and & called right,

(left) 4 DxD —D and (right) +: D x D — D satisfying the relations
(x-dy)dz = z-4(y-=2),
(xdy)dz = z(ytk 2),
(zkFy)dz = zF(y=2),
(xdy)kFz = zk (yF 2),
(zFy)Fz = zF(yF2)

Definition 2.2. [9] An associative trialgebra is a K-vector space (T, L,,F) such that
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(T,,F) is an associative dialgebra, (T, L) an associative algebra and,

(z4y) 4 z= xz4(y-2),
(zdy)Hdz = x4k 2),
(zFy)dz = zxF(y-dz2),
(xdy)Fz = zxF(ykF2),
(zFykz = aF(yF2),
(zdy)d4z = x4 (ylz),
(zly)dz = zl(y-=),
(rdy)lz = zl(yt 2),
(zFy)lz = zF (ylz),
(zly)Fz = zk (yF 2),

{ (zly)lz=uzl(ylz).

Definition 2.3. Let (71, L1, 71,F1) , (T2, Lo, d2,F2) be associative trialgebras over a field
K. Then a homomorphism from Ty to Ta is a K-linear mapping n : 71 — T2 such that

nriy) = nlx) fnly) (1
nrkiy) = n(w)F2n(y) (2
n(rliy) = n(z)Llan(y) (3)

forall z,y € T1.
Remark 2.4. A bijective homomorphism is an isomorphism of Ty and Ts.

Proposition 2.5. Let (T,-, L,F) be an associative trialgebras. Then (T,x) is an asso-
ctative algebra. with respect to the multiplication * : T @ T — T :

rxy=cdy+arkby—aly

for any x,y € °T.

Proof. Using the axioms of associative trialgebra we have for z,y,z € T
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(xxy)xz =(xdy+osby—azly)xz
=(@@dy+zrty—zly)dz+(zdy+aty—aly) k2
—(rdy4+zty—azly)lz
=@dy)dz+(zty)dz—(zly) dz+(zdy)Fz+(xFy)Fz
—(zly)Fz—(zdy)Llz—(zFy)Llz+ (xLly)Lz
=zd(ykz2)+azbk(ydz)—azl(ydz)+zF (yF 2)
+zxk(ybFz)—abk (yFz)—al(ykz)—axF (ylz) +zl(yLlz)
=zd(y*xz—ydz+ylz)+aeb(ydz)—acl(ydz)+azF (yF 2)
—zl(ybkz)—at (yLz)+zLl(ylz)
=zd(y*xz)—xd(ydz)+xd(yLlz)+ak (yd42)—al(yd2)
trk(ykz)—ol(ykz)—aok (ylz)+zl(ylz)
=zk(ydz4+ykz—ylz)—aol(ydz+ybz—ylz)+z-(yx2)
=zd(y*xz2)+zk(yxz)—xl(y*z)
=xx*(y*2).
]

Definition 2.6. Let A be a K-algebra and let A € K. If a K-linear map ® : A — A
satisfies the Rota-Baxter relation:

R(z)R(y) = R(R(2)y + 2R(y) + Azy)

Va,y € A, then R is called a Rota-Baxter operator of weight X and (A, R) is called a
Rota-Bazxter algebra of weight .

Remark 2.7. If R is a Rota-Baxter operator of weight A € K on trialgebras (T,-, L,F).
It is also a Rota-Baxter operator of weight X € K on the associative algebra (T, *).

Proposition 2.8. Let (T,, L,F) be a Rota-Baxter trialgebras of weight 0. Then (T, %)
s a left-symmetric algebra.

Proof. For z,y € T we have
(xxy)xz =R(x)*y—yxR(x)) %2

RR(z) xy —y*xR(z)) * 2 — 2z« R(R(x) xy — y x R(x))
RR(x) *y) x 2z — Ry * R(x)) x 2 — 2« R(N(z) xy) + z « R(y * RN(z))

and
xx(yxz) =xxRy)*z—2z+xR(y))
=R(x) * (R(y) * 2z — zx R(y)) — R(y) * z — 2 * R(y)) = R(z) :
=R(z) « (R(y) * z) — R(@) * (2 * R(y)) — (R(y) * 2) * R(z) + (2 * R(y)) * R(z)
Then

(x*xy)*z —xzx(yxz)—(yxx)*z+y*(x*x2)
=RR(z)xy)xz— Ry *RN(z)) xz — 2« R(R() *y) + z *x R(y * R(x))
—R(z) * (R(y) * 2) + R(z) * (2 * R(y)) + (R(y) * 2) = R(z)
—(z*R(y)) * R(z) — RR(y) * 2) * 2 + R(x * R(y)) * 2
+2zx RR(y) x2) — 2+ Rz« R(y)) + R(y) = (R(z) * 2)
—R(y) = (z + R(x)) — (R(z) * 2) * R(y) + (2 = R(z)) = R(y).
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Using x*y =2 1y+ax F y— 2Ly and the Rota-Baxter identities. Then associativity leads
to
(xxy)*z—x*(y*z)— (y*x)*2z+yx(x*2) = 0. Therefore we obtain (z,y, z) = (y,z,z). O

Proposition 2.9. Let (T,-, L, R) be a Rota-Baxter trialgebras of weight —1. Then
(A, %) is an associative algebra.

Proof. For x,y € T we have

xx(y*xz) =R(x)«R(y)*xz—2*R(y) —y=*2z)
—Ry)*xz—z+«R(y) —yxz)«R(x) —x*x (R(y)xz—2xR(y) —y*2)

and

(zxy)*xz =RNR(x)xy—yxR(x) —x*y)*2
—zxR(R(z) xy —y*xR(z) —z*xy) — (R(@)*y —y*R(z) —wxy)*2
Then we obtain
xx(yxz) —(xxy)xz
=R@)* Ry)xz—2xR(y) —yxz) — (R(y) xz2— 2+ R(y) —y* z) x R(z)
—zx(Ry)*xz—2xR(y) —y*x2z) —RR(x) *y +y*xRN(x)+x*xy)*z
+zxRR(z)*xy+yxsR(x)+zxy)+ R@)xy+yxRN(x)+z*xy)*2

Then it vanishes using x xy =2 1y + x F y — x 1Ly and the Rota-Baxter identities. O

3 Classification of low-dimensional associative trialgebras

The classification problem of algebra is one of the important problems of modern algebras.
This section describes the classification of associative trialgebras of dimension < 4 over
the field K of characteristic 0. Let {ej,e9,e3,...,e,} be the basis of an n-dimensional
associative trialgebras 7. The product of two elements of the basis {e1, es,€3,...,e,} can
be expressed as follows:

n

n n
k . _ k . _ k
e 1ej = Z%‘jek i eibej= Z o€k 5 eile; = Z{ijek.
k=1 k=1 k=1

Where, the tensors (’yfj), (51’3) and (fﬁ) stand for the families of structure constants of 7.
Now evaluating the structure constant equations for the tridendriform algebras, we obtain

(S (AL —BaL) =0, igqefl,...n}
S (AL = hE) =0, i jqed{l,...,n}
S (6L —hoL) =0, i jqe{l,....n}
22:1( fjégk—(;?kCS;]p) =0, 4,j,q€{l,...,n}
S (006 — b6l =0, ijqed{l,...,n}
S (A, — k) =0, dGge{l,...,n}
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S (At =Ry =0, ddqge{l,...,n}
S (V€L = 0h&h) =0, dGge{1,... n}
Yoo (oBeh — oty =0, ijqe{l,...,n}
S (ol —oh oty =0, d,jqe{l,...,n}
> fj gk—gfkgfp)zo, i,j,q € {1,...,n}.

Thus Trias can be considered as a subvariety of 3n3-dimensional affine space. On Trias
the linear matrix group GL,(K) acts by changing of basis.

Lemma 3.1. The axioms in Definition 2.1 are respectively equivalent to

P .4 p .49 _ N

T Tty =0 G € L] Pt~ k=0, djge{l,....n}
7ij7pk_5jk7ip:07 i.J,q €{1,...,n} ,yzg"g _51]? {Jp:O i,j,q € {1,...,n}
5%75143*751@520 :07 Zv]’q € {1,,Tl/} ;Z)J g/c g}k Z]p— ..

D <q D cq .. 5” pk_ jk(sip—(], Z,j,qe{l,...,n}
VijOpk — 00 =0, 4,5, €{1,...,n} 5t st —0 ijgedl. .n}
6Pel — ot 61 =0, i,5,q€{1,...,n} gopk gk Y
ek gk 7 T — =0, ijige{l,... n}.
’Y’L‘j’ypk: - é‘]k‘r)/’tp = 07 1,7,4 S {]—7 L 7”}

Note that 7;™ denote m'® isomorphism class of associative trialgebra in dimension n.

Theorem 3.2. Any 2-dimensional real associative trialgebra either is associative or iso-
of the following pairwise non-isomorphic triassociative algebras:

morphic to one

61—|€2
62‘|62

62_|61

62‘|€2

62—|€2

61—|€1

62"61

62—|€1

e1 e

61"61_

61462_

61—|61—

61—|€1_

= aey,

aey,

€1,

€2,

€2,

€1,
€2,

€1,

€1,

€2,

€1,
€2,

aey,

eo 1e; = aeo,

es e =aeq,
eo ey = aeo,

61"61
61"62

62"61
62"62

62F62

62"61
es Feg

€1|—€1

61"61
61"62

= €1,
= €2,

= 61,
= 62,

= e1 + €2,

= €1,
= €2,

2617

= 617
= 62,

e1 el = aeq,
e1 - es = aeq,

e1le; = beq,
6’1J_€2 = b€1 + aeg,

61J_62 = e1 + aeg,

€2J_€2 = €9.
62J_€1 = €1,
ng_eg = €9.

eosleys =e1 + e9.

€1J_€1 = €1,
e1les = es.
61J_61 =e1.
erler = ey,
€1J_€2 = €9.

e1ley = aey + bes.

Proof. Let T be a two-dimensional vector space. To determine an associative trialgebras
structure on 7 , we consider 7 with respect to one associative trialgebra operation. Let
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A = (T,-) be the algebra
e1 dep =eq, ea de; = ey

The multiplication operations -, 1L in T , we define as follows:
e1l-e1 = aier + agez, ezt ex = arer + ages,

e1 - ex = ager +ayen, erler = Prer + Paea,
ez Fe1 = aser +agea, ejlex = fBzer + Baea,

eale; = fBse1 + Boea,
ez les = Brer + Brea.

Now verifying associative trialgebra axioms, we get several constraints for the coefficients
«;, B; where 1 <4 < 8.

Applying (e; Fe1) 4e1 =e1 F (ex 1 e1), we get (a1e1 + ages) 1 e; = e1 - e; and then
are; = e1. Therefore oy = 1. The verification, (e; F e1) 4 e; = e1 F (e1 F e1) leads to
(e1 + agea) Fep = e F er. We have e; + ases = e1. Hence we have ae = 0. Consider
(e1ley) 4er =erl(e; Hep). It implies that (Sre1 + fBae2) 1 e1 = e Ley, therefore f; =1
and By = 0. then A = (7,) it is isomorphic to 73. The other associative trialgebras
of the list of Theorem 3.2 can be obtained by minor modifications of the observation
above. O

Theorem 3.3. Any 3-dimensional real associative trialgebra either is associative or iso-
morphic to one of the following pairwise non-isomorphic associative trialgebras :

e1 1ea=e erle; =e
1 D erk ey =es, >
'Tg L €9 = €1 = €3, . 61J_€2 = €3,
ex - eg = e,

(] = €3 = €3, €2J_€2 = €3.
ep Tea =e3, ek ex=es, erley = es,
752 :eg dep =eg, es - e; = eg, e1les = ez,
€9 = €3 = €3, €9 F €2 — €3 €2J_62 — €3.
62L€2 = €3,

T3: egdey=e esbFes=ce
3 2 dex=ey, 2k ex=ey, esles = er 4+ es.
63J_62 =e1 + €2,

TL:. esdes=ce esbes=ce
3 3e3 1, 3 es 1, esles = e1 + e,

755: e 1ey =e1 +e3, eo ey =e1 + e3, esles = e + eo.

e1 e = e,
€1 H €3 = €9, €3J_61 = €9,
€3 F €1 = €9, 63Le3 = €2.
ez b e3 = e,

e1 1es = eo,
756: 63461262,
63463:62,

757: e1 1er =ea +e3, el e =ey+e3, e1le; = eg + e3.

62462261,

62463_61 62"62261, €2J_62:€1,

T3 el G2Fe=en eales = ey,
€3 1e2 = €y,

63"62261, €3J_62:€1.

€3 —|63 = €1,
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esle; = e + e3,
T2: egdes=ce eaFes=c¢e
3 2 7162 35 21 €2 3 ey les = e + es.
7510 : egdegs=e;+e3, eybey=e;+es, eales = e + e3.
71 . es 1e; = eg, es e =eg, esle; = eg,
3 ey = Fey = leg =
€2 71 €2 = €3, €2 ™ €3 = €3, €21l€2 = €3.
e1 1er=e3, ek ey =es,
T]_2 . _1 _ l_ _ €2J—el = 637
g~ €171€e2 = ez, €2 ™ €1 = ey, _
62J_€2 = €3.
62‘*61263, €2|—€2:63.

Proof. Let T be a three-dimensional vector space. To determine an associative trialgebras

structure on 7 , we consider 7 with respect to one associative trialgebra operation. Let
B = (T,) be the algebra

62—161263, 62462263

The multiplication operations F, 1 in 7. We use the same method of the proof of the
Theorem 3.2.

Then B = (T,) it is isomorphic to 73'!. The other associative trialgebras of the list of
Theorem 3.3 can be obtained by minor modification of the observation above. ]

Theorem 3.4. Any j-dimensional real associative trialgebra either is associative or iso-
morphic to one of the following pairwise non-isomorphic associative tialgebras:

T

T2

TP

T

TP

61"61

=extes, e e =extes, erler=ertey,

ep les=ext+eq, e1lbez=extesq, e1les=ey,
e3 e = ey, e3 e = ey, esles = eq,

el 1er =ex+es, e1le;=ex+ey,
el 1ez3=ex+tes, el e3=ea+ey,
e3 1er =ex+es, e3b e =ex+ey,

e1le; = es + ey,
e1les = es + ey,
€3J_61 = e9 + éy4,

ezles = es.
e1 1ep=ex+eq, el e =ex+tey, e1ler = ez + ey,
e1 1e3 = eg + ey, el e3 =eo+ ey, e1les = es + ey,
es e =eg + ey, e3 e =eo + ey, esles = ey4.
61J_€2 = €4
e1 1es =eyq, exbel =ey, ’
eale] = ey,
62461264, 62F€2:€4,
61J_€2 = €4,
es ey =ey, eghk el =ey,
esle; = ey,
€1 = €9y = €4, €9 F €1 = €4, €1L€1 = €4,

eo 1e1 = ey, eaFea=eyq, eglel =ey,
€9 — €9y = €4, €3 = €1 = €4, €3J_€3 = €4.
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ez 1eq =
7:16: 64—|63=
eq 1eq =

62462:
TS ea ey =
eqs 1ey =

62462:

eq 1eq =

62462:

i

es ey
64—|€2

62%62
7110 i ey ey
64464

62‘*62
7111 i oeg ey
64‘*62

eo e
62464
eq e
64—164

12 .
Tic e

€9 = €1

7~13 . -
4 - €2 €2
€3 = €3

62"62
62‘*64
eq ey
64464

14 .
Tt

62‘*61
62—162
64‘*61
eq e

15 .
Tie

€1 = €1

7~16 . -
4 - €3 €1
€3 = €3

s e2les=
) 64—|62=

e1+e, e3hbeqs=e1+ey, e3zles=ce1+eq,
e1 + eog, eqsl-e3=e1+e, egleg=e+ e,
e1+e, esbeg=e+ey, egleg=ce;+es.
e1 + €3, eo ey =e1+e3, eyley=e1+ ez,
e1+e3, exlFes=e;+e3, eales=ce+es,
e1 + €3, eqst-ey=ey1+e3, egley=e1+e3.
e+ e3
’ es ey =e1 + es, egleys =eq+ ez,
e1 + es,
eol-es=ey+e3, esles=e;+es,
e1 + es,
eqt-es=e1+e3, eglesg=e1+es.
e1 + es,
eqs 1eg=e€1+e
4 esley = ey + e,
e1+es3, el ex=er+es,
ealey =e1 + ez,
e1 + es, eo -eq =e1 + e3,
€4J_€2 =e1 + €3,
e1+es, esbex=er+es,
esles =€
e4Feq = e3,
= e + €3, eol-ey=ey1+e3, eylesg=e1+es,
=e1 +es, egst-es=e1+e3, egley=e1+e3,
=e1 + €3, eq4 - eq =e3, esles = eq.
= e + e3, es ey =e1+e3, eyley =e1+es3,
=e] + e3, eol-es=ey1+e3, exles=e;+es3,
= e + e3, eqst-ey=e1+e3, egley=e1+es.
=e1] +e3
’ eol-ey=e1+e3, exley=e1+e3,
= €1 +€37
eol-es=e1+e3, eylesg=e1+ ez,
= €1 +63)
egl-es=e1+e3, egley=e1+e3.
= €1 +€37
= ey, erbe3=e4, erle = ey,
= ey, eoFey=e4, ejleg=ey,
= €4, €3 F €1 = €4, €3L€3 = €4.
=e;+e3, ele=e+e3, exler=ce+es,
= e + €3, eoles=e1+e3, eylesg=e+es,
= e + e3, eabea =e1 + ez, eqles =eq+es,
= e + €3, e4 - eq4 = eg3, esles = eq.
=e3, ejhe =e3 exle =e;g,
=e3, e1lFe=e3 e2le=es,
=e3, exbe=e3, esle =e;g,
= ez, es Fes =e3, egles =es.
e1 b e1 = ez + ey, e1le; = eg,
= e+ ey,
el e3=eo+ ey, e1lesg = ey,
= €2 +€4,
ez - e1 = es + ey, ezle; = eg,
= e+ ey,
es - e3 = ey, esles = ey + e4.
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Proof. Let T be a three-dimensional vector space. To determine an associative trialgebra
structure on 7 , we consider 7 with respect to one associative trialgebra operation. Let
C = (T,-) be the algebra

e1 dex =eyq, ea dep =eq,e0 14 e = ey4.

The multiplication operations -, Lin 7. We use the same method of the proof of the
Theorem 3.2.

Then C = (T,) it is isomorphic to 7;'. The other associative trialgebras of the list of
Theorem 3.4 can be obtained by minor modification of the observation. O

4 Derivations of low-dimensional associative trialgebras

Definition 4.1. A derivation of the associative trialgebras T is a linear transformation :
k:T — T satisfying

i (
k(xky)=r(z)Fy+zkky) (4)

forallz,y e T.

Let (7,-,F, L) be an n—dimensional triassocitive algebra with basis {e;} (1 <i < n) and
let x be a derivation on 7 For any i,j,k € N, 1 <1, j,k < n, let us put

n n n n
e lej = Z’yfjek; eiej= Zéfjek; eile; = ngjek, and k(e;) = aniej.
k=1 k=1 k=1 j=1
Then, in term of basis elements, equation (4) is equivalent to
ZZ:I(’Yijqu - sz’)’g] - Kkjfygk) = 07 i7j7q € {17 s ,Tl}

22:1(5£€jqu — H]“‘(ng — nkjéfk) = 0, i,j,q S {1, e ,n}
Zgzl(gfjﬁqk - Kkzgg] - K’k]éfk) = Ov iaja qc {]‘a s ,’I’L} .

Theorem 4.2. The derivations of two-dimensional associative trialgebras have the fol-
lowing form :

s (ki O . (B 0N, 6. (0 0 N\ 7 (k1 0\ s ( 3k2 O
7—2'(0 0)’7;'(—%11 0)’75'(0 K22 Ty 0 kn T2 Ko1 Koz )

Theorem 4.3. The derivations of three-dimensional associative trialgebras have the fol-
lowing form :

[ 0 0 O 0 Koz ki3 —K13 K13 K13
7? : K21 0 K13 ) 754 : 0 K23 K23 N ’T35 . 0 0 0 )
0 0 ki3 0 O 0 —K33 K33 K33



I. Basdour, B. Mosbahi, A. Zahari Abdou Damdji

129

K33 0 0 K11 0 0 2%33 K12 K13
6. LT .78
T& | ko1 2k33 ks |5T5 | Kor —kes+2k11 Kos |5 T3 0 w33 O
0 0 Ks3 K31 —K33 +2K11 K33 0 0 ka3
k13 K31 O —K13 + K22 K12 K13
T 0 0 0 )7 0 K22 ;
k31 kK32 O —K33 + K22 K32 K33
K33 — 2%22 K33 — 2%22 0 K11 O 0
TH - 0 Koo 0 (T3 0 ki1 O
K31 K32 K33 K31 K32 2K11

Proof. From Theorem 4.3, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider

73, Applying the systems of equations (4). we get ko1 = ko3 = k31 = kg2 = 0, K11 =

2K33, Koo = K33. Hence, the derivations of 758 are given as follows
2 00 0 1 0 0 01

k1 =010 |,so=1|[000 |,k3=1_0 0 0 | is basis of Der(75) and
0 01 0 0O 0 0O

DimDer(75) = 3. The centroids of the remaining parts of three-dimension associative
trialgebras can be carried out in similar manner as shown above. O

Theorem 4.4. The derivations of four-dimensional associative trialgebras have the fol-
lowing form :

K33 0 0 0 K11 0 0 0 K11 K12 0 K14
1| k21 2k33 Koz O 2| K21 ki1 kez O 3 0 w1 O 0
7:1 ’ 0 0 K33 0 ’7; ’ 0 0 K11 0 ’7; ’ 0 K32 K11 K34
ka1 0 Kaz 2K33 ka1 0 Kaz K11 0 0 0  2k11
K33 0 0 0 K33 0 0 0 K33 0 0 0
0 =~ 0 0 0 =~ 0 0 0 =~ 0 0
4 . 33 .T5 . 33 .76 . 33
7:1 ’ 0 0 K33 0 7:1 ’ 0 0 K33 0 ’7:1 ’ 0 0 K33 0
K41 K42 K43 2K33 K41 K42 K43 2K33 K41 K42 K43 2K33
k33 O 0 0 —K13 +2K44 K12 K13 K14
T7 . 0 R33 0 0 .7—8 . 0 KRa4 0 0 .
4 0 0 ka3 0 4 —K33 +2K44 K3z K3z K3z |’
K41 K42 K43 2K33 0 0 0 Ky
2K44 K12 0  Kuia 2K44 K12 0  Kus
. 0 Kaq 0 0 .10 0 Kaq 0 0 .
7:19 ’ 0 0 2/122 K34 ’7; 0 0 2%322 K34 ’
0 0 0 K44 0 0 0 K44
K11 0 0 0 K11 0 0 0
1 1
11. | K21 5K11 Ko 0 12 Kol 5K11 K23 0 ]
721 ’ 0 0 K11 0 ’ 72 0 0 K11 0 ’
ka1 0 ka3 Skn ka0 Kaz SRn
K33 0 0 0 2/4344 K12 0 K14
0 =k 0 0 0 K 0 0
13 . 33 .T14 . 44 .
Ti 0 0 ksg O T 0 ka2 2K44 Kza |’
K41 K42 K43 2K33 0 0 0 Ka
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K44 0 0 0 K33 K12 0 0
0 kg O 0 0 2x33 O 0
T Vrak
4 K31 K32 2Ka4 K3a 4 0 k32 k33 O
0 0 0 K kg1 0 Kaz 2K33

Proof. From Theorem 4.4, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
7?16. Applying the systems of equations (4). we get K12 = K13 = K14 = K21 = K23 = K4 =
K31 = K32 = K34 = k41 = k42 = k43 = 0, Koo = K11, K33 = K11 ka4 = 2k11. Hence, the
derivations of T8 are given as follows

10 0 O 0 0 0 0 0 0 0O 0 0 0O
Ky = 01 00 Ky — 0 0 00 Ky — 0 0 0O Ky = 0 0 0O
00 1 0|’ 0 0 00 0 0 0 0|’ 0 0 0O
0 0 0 2 1 0 0 O 01 00 0 010
is basis of Der(T) and DimDer(T) = 4. The centroids of the remaining four-dimensional
associative trialgebras can be determined in a similar manner as shown above. O

Corollary 4.5.

e The dimensions of the derivations of two-dimensional associative trialgebras range
between zero and two.

e The dimensions of the derivations of three-dimensional associative trialgebras range
between zero and five.

e The dimensions of the derivations of four-dimensional associative trialgebras range
between four and five.

5 Centroids of low-dimensional associative trialgebras

5.1 Properties of centroids of associative trialgebras

In this section, we state the following results on properties of centroids of associative
trialgebra T .

Definition 5.1. Let H be a nonempty subset of T. The subset
Zr(H)={z € HlroeH=Hex =0}, (5)
is said to be the centralizer of H in T where the o is -, and L, respectively.

Definition 5.2. Let T be an arbitrary associative trialgebra over a field K. The left,
right and middle centroids Tg(T), T&(T) and Tx(T) of T are the spaces of K-linear
transformations on T given by

PR(T) ={v € Endx(T)[¢(zoy) =z o(y) =1(x) ey forall z,yeT}, (6)
where the o is 4, F and L respectively.
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Definition 5.3. Let ¢ € Endg(T). If ¥(T) C C(T) and ¥(T?) = 0 then ) is called a
central derivation. The set of all central derivations of T is denoted by C(T).

Proposition 5.4. Let (7T,F,-, L) be an associative trialgebra. Then

i) I'(T)Der(T) C Der(T).
i) [U(T), Der(T)] € T'(T).
iii) [D(T),T(T)] (T) € T(T) and [[(T),T(T)] (T?) = 0.

Proof. The proof of parts i) —#i7) is straightforward by using definitions of derivation and
centroid. 0

Proposition 5.5. Let T be an associative trialgebra and ¢ € I'(T), k € Der(T). Then
v ok is a derivation of T.

Proof. Indeed, if x,y € T, then

(por)(zey) =p(r(z)ey+xenr(y))
= p(r(z) o y) +p(r e k(y)) = (por)(z) ey +ze(por)(y)

where the o is 4, and L respectively. O

Proposition 5.6. Let T be an associative trialgebra over a field K. Then C(T) =
I(T) N Der(T).

Proof. If ¢ € T'(T) N Der(T) the by definition of I'(7") and Der(T) we have

Y(rey)=1(zr)ey+xe(y) and Y(zey) =1(x) oy =xo0(y) for z,y € T. The yieds
Y(T?) = 0 and Y(T) C C(T) i.e I(T) N Der(T) € C(T). The inverse is obvious since
C(T) is in both I'(T) and Der(T), where the e is -, and L respectively. O

Proposition 5.7. Let (7T,F,, L) be an associative trialgebra. Then for any x € Der(T)
and ¢ € I'(T).

(i) The composition ko ¢ is in T'(T) if and only if ¢ o k is a central derivation of T.

(i) The composition ko is a derivation of T if and only if [k, ¢| is a central derivation

of T.

Proof. i) For any ¢ € I'(T), k € Der(T), Va,y € T. We have

kop(rey)=rop(r)ey =rop(x)ey+yp(xr)er(y)
=kop(x)ey+por(xey) —pok(x)ey.

Therefore (ko —pok)(rey)=(kep—gpor)(r)ey.
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ii) Let ko p € Der(T), using [k, ] € T'(T), we get

[k, ] (z o y) = ([, 0] (x)) oy =z o ([5,¢] (y)) (7)
On the other hand [k, ¢] = ko — g o and ko ¢, o k € Der(T). Therefore,
[k, 0] (zoy) = (k(po(z)) ey +ae(kop(y)) — (por(x)) ey —ze(por(y)). (8)
Due to (7) and (8) we get z o ([, ¢])(y) = ([k, ¢])(z) o y = 0.

Let’s now [k, ¢] be a central derivation of 7. Then

kop(zey) =[roypl(rey)+(por)(zey)
= p(or(z) @ y) + p(z 0 K(y))
=(por)(z)ey+mze(por)(y),

where e represents the products -, and L respectively. ]

5.2 Centroids of low-dimensional associative trialgebras

Let (7,,F, L) be an n—dimensional triassocitive algebra with basis {e;} (1 <i < n) and
let ¥ be a centroid on 7 For any ¢, 7,k € N, 1 <14, 5,k <n, let us put

n n n n

k k . _ k _

e dej = Z%jek; eiFe = Zéijek, eilej = Zfijek, and ¥(e;) = Zﬁjiej.
k=1 k=1 k=1 j=1

Then, in term of basis elements, equation (6) is equivalent to

ZZ:l(ryzkjﬁpk - ﬁkﬂgj) - 07 Zz:l ’Yz]‘f]ﬁpk - ﬁk]rylpk) = 07 iujup S {]-7 .. 7n}

ZZ:l(éisﬁqt - ﬁt?"(sgs) =0, ZZ:l (‘ﬁsﬂqt - 191586315) =0,754q¢€ {17 B n} (9)

22:1(%(11957” - ﬁrpfﬁq) = O’ ZZ:l(&};qﬁST - ﬁrqur) = Oa b,q,s € {1’ tety n} .
Theorem 5.8. The centroids of 2-dimensional complex associative trialgebra are given as
follows :

v 0 9 0 9 0 v 0
1. 11 . . 22 . T3 11 . TA 22 .
7; ( 0 1911>’7—22'< 0 1922>77-2 < O ,&11>77; < 0 1922>5

v 0 v 0 9 0 v 0
5. ( Yu g6, [ U2 g7 Ou s [ Un
(0 ) (8 ) ) ()

Theorem 5.9. The centroids of 3-dimensional complex associative trialgebra are given as
follows :

Y11 0 0 911 0 0 Y11 0 0
751 . 0 1911 0 ;7-32 : 0 ’1911 0 ;753 . 1921 1911 0 3
0 0 I 0 0 911 0 0 I
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v33 0 i3 P12 Y13 13 v33 0 0
T 0 ds3 0 |75 0 —ds0+U33 0 |;7L8:| Ya1 VUss oz |;
0 0 933 —U32 UED) 33 0 0 933
U39 + V33 0 0 U3z U122 i3 v33 0 0
TS Va1 pi1 Vs |73 0 d33 0 |;73: 0 d33 0
V31 2011 — U33 V33 0 0 4933 0 J32 V33
Y11 O 0 Y33 0 0 Y11 0 0

T30 0 11 Va3 |;TH: 0 d33 0 T2 0 Y11 Y23
0 0 In V31 U3z V33 0 0 Y1

Where p11 = 32 + ¥33 — U23, p12 = —U13 — V32 + VUs3.

Proof. From Theorem 5.9, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
’7512. Applying the systems of equations (9). we get P12 = 3 = Vo1 = V31 = V32 =

0, Y90 =11, 133 = ¥11. Hence, the derivations of 7512 are given as follows
100 000
vp=101 0 |,99 =1 0 0 1 | is basis of Der(I') and DimDer(I') = 2. The
0 01 000
centroids of the remaining three-dimensional associative trialgebras can be determined in
a similar manner as above. O

Theorem 5.10. The centroids of 4-dimensional associative trialgebra are given as follows

11 0 0 0 Vaa 0 0 0 V44 0 0 0
U U Y 0 Y ) U 0 U 0
1. 21 U111 Va3 7 21 Uaa Va3 . 21
i 0 0 Y11 0 0 0 0 Y44 O i 0
Ya1 0 a3 O1a Yo 0 Va3 Vs P41 Va4
Voo 0 0 0 o9 0 0 0
0o 9 0 0 0o 9 0 0
4 . 22 LT . 22
Ti 0 0 Yoo 0 (T 0 0 oo 0
Ya1 Vao Vuz P22 Va1 Vao Vaz Vo2
Vaa — V12 Y12 P13 Vs Vaga — V13 Y12 Y13 Vs
76 . Vag — Voo Voo Vo3 Vo T 0 Vaa O
4 0 0 Y4 O A Vg4 — 933 V30 V33 U3
0 0 0 1944 0 0 0 Q44
Vaa — V13 Y12 Y13 Vs Yag V12 0 Vi
0 Vaa 0 0 0 0 0
TE: (TE
4 Vaq — V33 Vs V33 U3y 4 0 Vg2 Vaa V34
0 O 0 aq4 0 0 0 1944
Yag Y12 0 Vs Vaa — V13 V12 Y13 Vs
quo.| 0 Y 00 oy 0 Vg O 0|
1 0 V30 Vaa V3q |77 | Yaa—V33 P32 V33 Vaa |
0 0 0 Dy 0 0 0 9y
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Vgg — V13 V12 V13 Vs Y4 0 0 O
712 0 Vg 0 0 3 | 0 Wa O 0
o Vag — V33 32 V33 VUaq |74 7 0 0 Jdu O ’
0 0 0 Yy Vg1 Vao Va3 Vg
Yaqa V19 0 V14 V44 0 0 0 33 0 0 0
T4 0 Vaa 0 0 LTI 0 Vaa 0 0 L TI6 Uo1 U333 Uos 0
4 0 U2 Vaa VUsa |74 | Us1 Us0 Yaa sq |74 0 0 4d33 0
0 0 0 g 0 0 0 Y Y1 0 Va3 Us3

Proof. From Theorem 5.9, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
Tt Applying the systems of equations (9). we get 12 = V13 = V14 = V21 = Vo3 = Yoy =
V31 = V32 = ¥43 = 0, U171 = Va2,

P33 = Yoo 4qa = Y99. Hence, the derivations of ’7?14 are given as follows

1 0 0 O 0 0 0O 0 0 0O 0 0 0O
01 0 O 0 0 0 O 0 0 0 O 0 0 0 O
h o010 loooo B loooo|™ 000 o0
0 0 0 1 1 0 0 O 01 0 0 0 0 10
is basis of Der(I') and DimDer(I') = 4. The centroid of the remaining parts of four-

S

carried out in a similar manner as shown above.

O]

dimensional associative trialgebras can b

Corollary 5.11.

o The dimensions of the centroids of two-dimensional associative trialgebras are one.

e The dimensions of the centroids of three-dimensional associative trialgebras range
between one and five.

o The dimensions of the centroids of four-dimensional associative trialgebras range
between one and seven.
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