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Classification, derivations and centroids of
low-dimensional associative trialgebras
Imed Basdour1, Bouzid Mosbahi2 and Ahmed Zahari Abdou Damdji*, 3

ABSTRACT
In this paper, we study the structure and algebraic varieties of associative trialgebras. In particular, we
classify all associative trialgebras of dimension at most four over a field of characteristic zero. Based on
this classification, we provide a detailed analysis of their derivations and centroids. We also investigate
the role of centroids in the structural theory of associative trialgebras and compute them explicitly for
each isomorphism class in low dimensions. All computations are performed using symbolic computation
software such as Mathematica. These results offer new insights into the algebraic and geometric aspects of
associative trialgebras.
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1 Introduction

Associative trialgebras, also known as triassociative algebras and denoted as (T ,⊥,⊣,⊢),
were first introduced by Loday and Ronco in 2001 (see [9]). These algebras extend the
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scope of Loday’s associative dialgebras (diassociative algebras), as explored in the foun-
dational works [2, 8, 10, 20]. Characterized by a vector space and three binary operations
satisfying eleven defining relations, associative trialgebras have emerged as a rich field of
study in the broader landscape of non-associative algebraic structures.
The classification of algebraic structures [1, 4, 17], including dialgebras and trialgebras
[8, 20, 21], as well as Hom-type and BiHom-type generalizations [11, 13, 14, 22], has
become a central focus in recent mathematical research. Derivations and centroids serve
as crucial tools in the structural study of these algebras, offering deep insights into their
internal symmetries and automorphism behaviors [6, 7, 15, 18]. These concepts not only
contribute to pure algebra but also find applications in geometry and physics.
Recent developments in generalized and Hom-type algebraic frameworks have introduced
new avenues for studying algebraic deformations, such as Hom-associative and Hom-
trialgebra structures [3, 11, 12, 16], and their corresponding derivations and centroids
[2, 13, 22, 23]. The role of Rota-Baxter relations, bimodule constructions, and Hom-
Poisson structures is further emphasized in [2, 3, 12], highlighting the interplay between
algebraic operations and homomorphisms in modern generalizations.
Let T be an n-dimensional K-linear space with a basis {e1, e2, . . . , en}. The triassociative
structure on T , characterized by the product operations γ, δ, and ξ, is governed by 3n3

structure constants γkij , δkij , and ξkij . This structure is defined through the equations ei ⊣

ej =
n∑

k=1

γkijek, ei ⊢ ej =
n∑

k=1

δkijek, and ei⊥ej =
n∑

k=1

ξkijek. Ensuring the triassociative and

unital properties gives rise to the sub-variety Tt of K3n3 .
Changes in T result in a natural transport of the structure action of GLn(K) on Tt, es-
tablishing a one-to-one correspondence between isomorphism classes of n-dimensional al-
gebras and the orbits of the action of GLn(K) on Tt. The role of centroids in classification
problems and various areas of algebraic structure theory is well-established [6, 7, 15, 18].
Similar approaches have been applied in the classification of low-dimensional Leibniz alge-
bras and their derivations [19], as well as in Zinbiel algebras [4] and BiHom-superdialgebras
[14].
This paper aims to introduce and classify derivations and centroids specifically within
the context of associative trialgebras, building on earlier classifications of low-dimensional
dialgebras [5, 8, 20] and utilizing computational techniques inspired by [1, 17, 16].
The paper is organized into several sections, each contributing to the understanding and
classification of associative trialgebras. In the first section, we provide an introduction
to the subject and highlight previously obtained results. Section 2 lays down the basic
concepts essential for the ensuing study.
Section 3 delves into the algebraic varieties of associative trialgebras, offering classifica-
tions of two-dimensional, three-dimensional, and four-dimensional trialgebras up to iso-
morphism. The comprehensive analysis includes the revelation that any 2-dimensional
associative trialgebra is isomorphic to one of 8 possible associative trialgebras. Similarly,
we demonstrate that 3-dimensional associative trialgebras are isomorphic to one of the 12
possible non-isomorphic associative trialgebras, and 4-dimensional associative trialgebras
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are isomorphic to one of 16 possible associative trialgebras. Our meticulous classification
involves solving structure constant equations with the aid of computer algebra software,
as also adopted in works like [1, 16].
In Section 4, we present the classification of derivations, revealing 5 non-isomorphic deriva-
tions of two-dimensional associative trialgebras, 8 non-isomorphic derivations of three-
dimensional associative trialgebras, and 16 non-isomorphic derivations of four-dimensional
associative trialgebras, with dimensions ranging from 0 to 6. Our approach is influenced
by methods used in earlier investigations of derivations in Hom-algebraic and dialgebraic
settings [2, 3, 21, 22].
Finally, in Section 5, we delve into the classification of centroids. Our evaluation uncov-
ers that the centroids of 2-dimensional associative trialgebras are isomorphic to each of
the 8 non-isomorphic classes, each with a dimension of one. Similarly, the centroids of 3-
dimensional associative trialgebras are isomorphic to each of the 12 non-isomorphic classes,
with dimensions ranging from 1 to 5. Moreover, in the classification of 4-dimensional asso-
ciative trialgebras and derivations, we identify 16 non-isomorphic centroids of associative
trialgebras, with dimensions in the range of 1 to 7.
It is important to note that the concept of derivations and centroids in this context draws
inspiration from that of finite-dimensional algebras [7, 18]. This study focuses specifically
on the derivations and centroids of finite-dimensional associative trialgebras, showcasing
their significance in algebraic and geometric classification problems of algebras. Utilizing
the classification results of associative trialgebras, we provide a comprehensive description
of derivations and centroids for two, three, and four-dimensional associative trialgebras.
All algebras and vector spaces considered are assumed to be over a field K of character-
istic zero. Our results significantly contribute to the understanding of the structure and
properties of associative trialgebras, paving the way for future research in this intriguing
area.

2 Preliminaries

Definition 2.1. [9] An associative dialgebra is a vector space D equipped with two binary
operations : ⊣ called left and ⊢ called right,
(left) ⊣: D ×D → D and (right) ⊢: D ×D → D satisfying the relations


(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z),
(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),
(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),
(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z),
(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z).

Definition 2.2. [9] An associative trialgebra is a K-vector space (T ,⊥,⊣,⊢) such that
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(T ,⊣,⊢) is an associative dialgebra, (T ,⊥) an associative algebra and,


(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z),
(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),
(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),
(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z),
(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z),


(x ⊣ y) ⊣ z = x ⊣ (y⊥z),
(x⊥y) ⊣ z = x⊥(y ⊣ z),
(x ⊣ y)⊥z = x⊥(y ⊢ z),
(x ⊢ y)⊥z = x ⊢ (y⊥z),
(x⊥y) ⊢ z = x ⊢ (y ⊢ z),

{
(x⊥y)⊥z = x⊥(y⊥z).

Definition 2.3. Let (T1,⊥1,⊣1,⊢1) , (T2,⊥2,⊣2,⊢2) be associative trialgebras over a field
K. Then a homomorphism from T1 to T2 is a K-linear mapping η : T1 −→ T2 such that

η(x ⊣1 y) = η(x) ⊣2 η(y) (1)
η(x ⊢1 y) = η(x) ⊢2 η(y) (2)
η(x⊥1y) = η(x)⊥2η(y) (3)

for all x, y ∈ T1.

Remark 2.4. A bijective homomorphism is an isomorphism of T1 and T2.

Proposition 2.5. Let (T ,⊣,⊥,⊢) be an associative trialgebras. Then (T , ⋆) is an asso-
ciative algebra. with respect to the multiplication ∗ : T ⊗ T −→ T :

x ∗ y = x ⊣ y + x ⊢ y − x⊥y

for any x, y ∈ T .

Proof. Using the axioms of associative trialgebra we have for x, y, z ∈ T
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(x ∗ y) ∗ z = (x ⊣ y + x ⊢ y − x⊥y) ∗ z
= (x ⊣ y + x ⊢ y − x⊥y) ⊣ z + (x ⊣ y + x ⊢ y − x⊥y) ⊢ z
−(x ⊣ y + x ⊢ y − x⊥y)⊥z

= (x ⊣ y) ⊣ z + (x ⊢ y) ⊣ z − (x⊥y) ⊣ z + (x ⊣ y) ⊢ z + (x ⊢ y) ⊢ z
−(x⊥y) ⊢ z − (x ⊣ y)⊥z − (x ⊢ y)⊥z + (x⊥y)⊥z

= x ⊣ (y ⊢ z) + x ⊢ (y ⊣ z)− x⊥(y ⊣ z) + x ⊢ (y ⊢ z)
+x ⊢ (y ⊢ z)− x ⊢ (y ⊢ z)− x⊥(y ⊢ z)− x ⊢ (y⊥z) + x⊥(y⊥z)

= x ⊣ (y ∗ z − y ⊣ z + y⊥z) + x ⊢ (y ⊣ z)− x⊥(y ⊣ z) + x ⊢ (y ⊢ z)
−x⊥(y ⊢ z)− x ⊢ (y⊥z) + x⊥(y⊥z)

= x ⊣ (y ∗ z)− x ⊣ (y ⊣ z) + x ⊣ (y⊥z) + x ⊢ (y ⊣ z)− x⊥(y ⊣ z)
+x ⊢ (y ⊢ z)− x⊥(y ⊢ z)− x ⊢ (y⊥z) + x⊥(y⊥z)

= x ⊢ (y ⊣ z + y ⊢ z − y⊥z)− x⊥(y ⊣ z + y ⊢ z − y⊥z) + x ⊣ (y ∗ z)
= x ⊣ (y ∗ z) + x ⊢ (y ∗ z)− x⊥(y ∗ z)
= x ∗ (y ∗ z).

Definition 2.6. Let A be a K-algebra and let λ ∈ K. If a K-linear map ℜ : A −→ A
satisfies the Rota-Baxter relation:

ℜ(x)ℜ(y) = ℜ(ℜ(x)y + xℜ(y) + λxy)

∀x, y ∈ A, then ℜ is called a Rota-Baxter operator of weight λ and (A,ℜ) is called a
Rota-Baxter algebra of weight λ.
Remark 2.7. If ℜ is a Rota-Baxter operator of weight λ ∈ K on trialgebras (T ,⊣,⊥,⊢).
It is also a Rota-Baxter operator of weight λ ∈ K on the associative algebra (T , ∗).
Proposition 2.8. Let (T ,⊣,⊥,⊢) be a Rota-Baxter trialgebras of weight 0. Then (T , ⋆)
is a left-symmetric algebra.

Proof. For x, y ∈ T we have
(x ⋆ y) ⋆ z = (ℜ(x) ∗ y − y ∗ ℜ(x)) ⋆ z

= ℜ(ℜ(x) ∗ y − y ∗ ℜ(x)) ∗ z − z ∗ ℜ(ℜ(x) ∗ y − y ∗ ℜ(x))
= ℜ(ℜ(x) ∗ y) ∗ z −ℜ(y ∗ ℜ(x)) ∗ z − z ∗ ℜ(ℜ(x) ∗ y) + z ∗ ℜ(y ∗ ℜ(x))

and
x ⋆ (y ⋆ z) = x ⋆ (ℜ(y) ∗ z − z ∗ ℜ(y))

= ℜ(x) ∗ (ℜ(y) ∗ z − z ∗ ℜ(y))− (ℜ(y) ∗ z − z ∗ ℜ(y)) ∗ ℜ(x)
= ℜ(x) ∗ (ℜ(y) ∗ z)−ℜ(x) ∗ (z ∗ ℜ(y))− (ℜ(y) ∗ z) ∗ ℜ(x) + (z ∗ ℜ(y)) ∗ ℜ(x)

.

Then
(x ⋆ y) ⋆ z −x ⋆ (y ⋆ z)− (y ⋆ x) ⋆ z + y ⋆ (x ⋆ z)

= ℜ(ℜ(x) ∗ y) ∗ z −ℜ(y ∗ ℜ(x)) ∗ z − z ∗ ℜ(ℜ(x) ∗ y) + z ∗ ℜ(y ∗ ℜ(x))
−ℜ(x) ∗ (ℜ(y) ∗ z) + ℜ(x) ∗ (z ∗ ℜ(y)) + (ℜ(y) ∗ z) ∗ ℜ(x)
−(z ∗ ℜ(y)) ∗ ℜ(x)−ℜ(ℜ(y) ∗ x) ∗ z + ℜ(x ∗ ℜ(y)) ∗ z
+z ∗ ℜ(ℜ(y) ∗ x)− z ∗ ℜ(x ∗ ℜ(y)) + ℜ(y) ∗ (ℜ(x) ∗ z)
−ℜ(y) ∗ (z ∗ ℜ(x))− (ℜ(x) ∗ z) ∗ ℜ(y) + (z ∗ ℜ(x)) ∗ ℜ(y).

.
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Using x ∗ y = x ⊣ y+x ⊢ y−x⊥y and the Rota-Baxter identities.Then associativity leads
to
(x⋆y)⋆z−x⋆(y⋆z)−(y⋆x)⋆z+y⋆(x⋆z) = 0. Therefore we obtain (x, y, z) = (y, x, z).

Proposition 2.9. Let (T ,⊣,⊥,⊢,ℜ) be a Rota-Baxter trialgebras of weight −1. Then
(A, ⋆) is an associative algebra.

Proof. For x, y ∈ T we have

x ⋆ (y ⋆ z) = ℜ(x) ∗ (ℜ(y) ∗ z − z ∗ ℜ(y)− y ∗ z)
−(ℜ(y) ∗ z − z ∗ ℜ(y)− y ∗ z) ∗ ℜ(x)− x ∗ (ℜ(y) ∗ z − z ∗ ℜ(y)− y ∗ z)

and

(x ⋆ y) ⋆ z = ℜ(ℜ(x) ∗ y − y ∗ ℜ(x)− x ∗ y) ∗ z
−z ∗ ℜ(ℜ(x) ∗ y − y ∗ ℜ(x)− x ∗ y)− (ℜ(x) ∗ y − y ∗ ℜ(x)− x ∗ y) ∗ z

Then we obtain

x ⋆ (y ⋆ z) −(x ⋆ y) ⋆ z
= ℜ(x) ∗ (ℜ(y) ∗ z − z ∗ ℜ(y)− y ∗ z)− (ℜ(y) ∗ z − z ∗ ℜ(y)− y ∗ z) ∗ ℜ(x)
−x ∗ (ℜ(y) ∗ z − z ∗ ℜ(y)− y ∗ z)−ℜ(ℜ(x) ∗ y + y ∗ ℜ(x) + x ∗ y) ∗ z
+z ∗ ℜ(ℜ(x) ∗ y + y ∗ ℜ(x) + x ∗ y) + (ℜ(x) ∗ y + y ∗ ℜ(x) + x ∗ y) ∗ z

Then it vanishes using x ∗ y = x ⊣ y + x ⊢ y − x⊥y and the Rota-Baxter identities.

3 Classification of low-dimensional associative trialgebras

The classification problem of algebra is one of the important problems of modern algebras.
This section describes the classification of associative trialgebras of dimension ≤ 4 over
the field K of characteristic 0. Let {e1, e2, e3, . . . , en} be the basis of an n-dimensional
associative trialgebras T . The product of two elements of the basis {e1, e2, e3, . . . , en} can
be expressed as follows:

ei ⊣ ej =
n∑

k=1

γkijek ; ei ⊢ ej =
n∑

k=1

δkijek ; ei⊥ej =
n∑

k=1

ξkijek.

Where, the tensors (γkij), (δkij) and (ξkij) stand for the families of structure constants of T .
Now evaluating the structure constant equations for the tridendriform algebras, we obtain



∑n
p=1(γ

p
ijγ

q
pk − γpjkγ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(γ
p
ijγ

q
pk − δpjkγ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(δ
p
ijγ

q
pk − γpjkδ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(γ
p
ijδ

q
pk − δpjkδ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(δ
p
ijδ

q
pk − δpjkδ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(γ
p
ijγ

q
pk − ξpjkγ

q
ip) = 0, i, j, q ∈ {1, . . . , n}
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

∑n
p=1(ξ

p
ijγ

q
pk − γpjkξ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(γ
p
ijξ

q
pk − δpjkξ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(δ
p
ijξ

q
pk − ξpjkδ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(ξ
p
ijδ

q
pk − δpjkδ

q
ip) = 0, i, j, q ∈ {1, . . . , n}∑n

p=1(ξ
p
ijξ

q
pk − ξpjkξ

q
ip) = 0, i, j, q ∈ {1, . . . , n} .

Thus Trias can be considered as a subvariety of 3n3-dimensional affine space. On Trias
the linear matrix group GLn(K) acts by changing of basis.

Lemma 3.1. The axioms in Definition 2.1 are respectively equivalent to

γpijγ
q
pk − γpjkγ

q
ip = 0, i, j, q ∈ {1, . . . , n}

γpijγ
q
pk − δpjkγ

q
ip = 0, i, j, q ∈ {1, . . . , n}

δpijγ
q
pk − γpjkδ

q
ip = 0, i, j, q ∈ {1, . . . , n}

γpijδ
q
pk − δpjkδ

q
ip = 0, i, j, q ∈ {1, . . . , n}

δpijδ
q
pk − δpjkδ

q
ip = 0, i, j, q ∈ {1, . . . , n}

γpijγ
q
pk − ξpjkγ

q
ip = 0, i, j, q ∈ {1, . . . , n}



ξpijγ
q
pk − γpjkξ

q
ip = 0, i, j, q ∈ {1, . . . , n}

γpijξ
q
pk − δpjkξ

q
ip = 0, i, j, q ∈ {1, . . . , n}

δpijξ
q
pk − ξpjkδ

q
ip = 0, i, j, q ∈ {1, . . . , n}

ξpijδ
q
pk − δpjkδ

q
ip = 0, i, j, q ∈ {1, . . . , n}

ξpijξ
q
pk − ξpjkξ

q
ip = 0, i, j, q ∈ {1, . . . , n} .

Note that T m
n denote mth isomorphism class of associative trialgebra in dimension n.

Theorem 3.2. Any 2-dimensional real associative trialgebra either is associative or iso-
morphic to one of the following pairwise non-isomorphic triassociative algebras:

T 1
2 : e1 ⊣ e2 = ae1,

e2 ⊣ e2 = ae2,
e2 ⊢ e1 = ae1,
e2 ⊢ e2 = ae2,

e1⊥e1 = be1,
e1⊥e2 = be1 + ae2,

T 2
2 : e1 ⊣ e1 = e1,

e2 ⊣ e1 = e2,
e1 ⊢ e1 = e1,
e1 ⊢ e2 = e2,

e1⊥e2 = e1 + ae2,
e2⊥e2 = e2.

T 3
2 : e2 ⊣ e2 = e2,

e2 ⊢ e1 = e1,
e2 ⊢ e2 = e2,

e2⊥e1 = e1,
e2⊥e2 = e2.

T 4
2 : e1 ⊣ e2 = e1,

e2 ⊣ e2 = e2,
e2 ⊢ e2 = e1 + e2, e2⊥e2 = e1 + e2.

T 5
2 : e1 ⊣ e1 = e1,

e2 ⊢ e1 = e1,
e2 ⊢ e2 = e2,

e1⊥e1 = e1,
e1⊥e2 = e2.

T 6
2 : e1 ⊣ e1 = e1,

e2 ⊣ e1 = e2,
e1 ⊢ e1 = e1, e1⊥e1 = e1.

T 7
2 : e1 ⊣ e1 = e1,

e2 ⊣ e1 = e2,
e1 ⊢ e1 = e1,
e1 ⊢ e2 = e2,

e1⊥e1 = e1,
e1⊥e2 = e2.

T 8
2 : e1 ⊣ e1 = ae1,

e2 ⊣ e1 = ae2,
e1 ⊢ e1 = ae1,
e1 ⊢ e2 = ae2,

e1⊥e1 = ae1 + be2.

Proof. Let T be a two-dimensional vector space. To determine an associative trialgebras
structure on T , we consider T with respect to one associative trialgebra operation. Let
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A = (T ,⊣) be the algebra
e1 ⊣ e1 = e1, e2 ⊣ e1 = e2

The multiplication operations ⊢,⊥ in T , we define as follows:

e1 ⊢ e1 = α1e1 + α2e2,
e1 ⊢ e2 = α3e1 + α4e2,
e2 ⊢ e1 = α5e1 + α6e2,

e2 ⊢ e2 = α7e1 + α8e2,
e1⊥e1 = β1e1 + β2e2,
e1⊥e2 = β3e1 + β4e2,

e2⊥e1 = β5e1 + β6e2,
e2⊥e2 = β7e1 + β8e2.

Now verifying associative trialgebra axioms, we get several constraints for the coefficients
αi, βi where 1 ≤ i ≤ 8.
Applying (e1 ⊢ e1) ⊣ e1 = e1 ⊢ (e1 ⊣ e1), we get (α1e1 + α2e2) ⊣ e1 = e1 ⊢ e1 and then
α1e1 = e1. Therefore α1 = 1. The verification, (e1 ⊢ e1) ⊣ e1 = e1 ⊢ (e1 ⊢ e1) leads to
(e1 + α2e2) ⊢ e1 = e1 ⊢ e1. We have e1 + α2e2 = e1. Hence we have α2 = 0. Consider
(e1⊥e1) ⊣ e1 = e1⊥(e1 ⊣ e1). It implies that (β1e1 + β2e2) ⊣ e1 = e1⊥e1, therefore β1 = 1
and β2 = 0. then A = (T ,⊣) it is isomorphic to T 6

2 . The other associative trialgebras
of the list of Theorem 3.2 can be obtained by minor modifications of the observation
above.

Theorem 3.3. Any 3-dimensional real associative trialgebra either is associative or iso-
morphic to one of the following pairwise non-isomorphic associative trialgebras :

T 1
3 :

e1 ⊣ e2 = e3,
e2 ⊣ e1 = e3,
e2 ⊣ e3 = e3,

e1 ⊢ e2 = e3,
e2 ⊢ e2 = e3,

e1⊥e1 = e3,
e1⊥e2 = e3,
e2⊥e2 = e3.

T 2
3 :

e1 ⊣ e2 = e3,
e2 ⊣ e1 = e3,
e2 ⊣ e3 = e3,

e1 ⊢ e2 = e3,
e2 ⊢ e1 = e3,
e2 ⊢ e2 = e3

e1⊥e1 = e3,
e1⊥e2 = e3,
e2⊥e2 = e3.

T 3
3 : e2 ⊣ e2 = e1, e2 ⊢ e2 = e1,

e2⊥e2 = e3,
e2⊥e3 = e1 + e3.

T 4
3 : e3 ⊣ e3 = e1, e3 ⊢ e3 = e1,

e3⊥e2 = e1 + e2,
e3⊥e3 = e1 + e2.

T 5
3 : e2 ⊣ e2 = e1 + e3, e2 ⊢ e2 = e1 + e3, e2⊥e2 = e1 + e2.

T 6
3 :

e1 ⊣ e3 = e2,
e3 ⊣ e1 = e2,
e3 ⊣ e3 = e2,

e1 ⊢ e1 = e2,
e1 ⊢ e3 = e2,
e3 ⊢ e1 = e2,
e3 ⊢ e3 = e2,

e3⊥e1 = e2,
e3⊥e3 = e2.

T 7
3 : e1 ⊣ e1 = e2 + e3, e1 ⊢ e1 = e2 + e3, e1⊥e1 = e2 + e3.

T 8
3 :

e2 ⊣ e2 = e1,
e2 ⊣ e3 = e1,
e3 ⊣ e2 = e1,
e3 ⊣ e3 = e1,

e2 ⊢ e2 = e1,
e2 ⊢ e3 = e1,
e3 ⊢ e2 = e1,

e2⊥e2 = e1,
e2⊥e3 = e1,
e3⊥e2 = e1.
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T 9
3 : e2 ⊣ e2 = e3, e2 ⊢ e2 = e3,

e2⊥e1 = e1 + e3,
e2⊥e2 = e1 + e3.

T 10
3 : e2 ⊣ e2 = e1 + e3, e2 ⊢ e2 = e1 + e3, e2⊥e2 = e1 + e3.

T 11
3 : e2 ⊣ e1 = e3,

e2 ⊣ e2 = e3,
e2 ⊢ e1 = e3,
e2 ⊢ e2 = e3,

e2⊥e1 = e3,
e2⊥e2 = e3.

T 12
3 :

e1 ⊣ e1 = e3,
e1 ⊣ e2 = e3,
e2 ⊣ e1 = e3,

e1 ⊢ e2 = e3,
e2 ⊢ e1 = e3,
e2 ⊢ e2 = e3.

e2⊥e1 = e3,
e2⊥e2 = e3.

Proof. Let T be a three-dimensional vector space. To determine an associative trialgebras
structure on T , we consider T with respect to one associative trialgebra operation. Let
B = (T ,⊣) be the algebra

e2 ⊣ e1 = e3, e2 ⊣ e2 = e3

The multiplication operations ⊢,⊥ in T . We use the same method of the proof of the
Theorem 3.2.
Then B = (T ,⊣) it is isomorphic to T 11

3 . The other associative trialgebras of the list of
Theorem 3.3 can be obtained by minor modification of the observation above.

Theorem 3.4. Any 4-dimensional real associative trialgebra either is associative or iso-
morphic to one of the following pairwise non-isomorphic associative tialgebras:

T 1
4 :

e1 ⊣ e1 = e2 + e4,
e1 ⊣ e3 = e2 + e4,
e3 ⊣ e1 = e4,

e1 ⊢ e1 = e2 + e4,
e1 ⊢ e3 = e2 + e4,
e3 ⊢ e1 = e4,

e1⊥e1 = e2 + e4,
e1⊥e3 = e4,
e3⊥e3 = e2,

T 2
4 :

e1 ⊣ e1 = e2 + e4,
e1 ⊣ e3 = e2 + e4,
e3 ⊣ e1 = e2 + e4,

e1 ⊢ e1 = e2 + e4,
e1 ⊢ e3 = e2 + e4,
e3 ⊢ e1 = e2 + e4,

e1⊥e1 = e2 + e4,
e1⊥e3 = e2 + e4,
e3⊥e1 = e2 + e4,
e3⊥e3 = e2.

T 3
4 :

e1 ⊣ e1 = e2 + e4,
e1 ⊣ e3 = e2 + e4,
e3 ⊣ e1 = e2 + e4,

e1 ⊢ e1 = e2 + e4,
e1 ⊢ e3 = e2 + e4,
e3 ⊢ e1 = e2 + e4,

e1⊥e1 = e2 + e4,
e1⊥e3 = e2 + e4,
e3⊥e3 = e4.

T 4
4 :

e1 ⊣ e2 = e4,
e2 ⊣ e1 = e4,
e2 ⊣ e2 = e4,

e2 ⊢ e1 = e4,
e2 ⊢ e2 = e4,
e3 ⊢ e1 = e4,

e1⊥e2 = e4,
e2⊥e1 = e4,
e1⊥e2 = e4,
e2⊥e1 = e4,

T 5
4 :

e1 ⊣ e2 = e4,
e2 ⊣ e1 = e4,
e2 ⊣ e2 = e4,

e2 ⊢ e1 = e4,
e2 ⊢ e2 = e4,
e3 ⊢ e1 = e4,

e1⊥e1 = e4,
e2⊥e1 = e4,
e3⊥e3 = e4.
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T 6
4 :

e3 ⊣ e4 = e1 + e2,
e4 ⊣ e3 = e1 + e2,
e4 ⊣ e4 = e1 + e2,

e3 ⊢ e4 = e1 + e2,
e4 ⊢ e3 = e1 + e2,
e4 ⊢ e4 = e1 + e2,

e3⊥e4 = e1 + e2,
e4⊥e3 = e1 + e2,
e4⊥e4 = e1 + e2.

T 7
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e2 = e1 + e3,

e2 ⊢ e2 = e1 + e3,
e2 ⊢ e4 = e1 + e3,
e4 ⊢ e2 = e1 + e3,

e2⊥e2 = e1 + e3,
e2⊥e4 = e1 + e3,
e4⊥e2 = e1 + e3.

T 8
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e2 = e1 + e3,
e4 ⊣ e4 = e1 + e3,

e2 ⊢ e2 = e1 + e3,
e2 ⊢ e4 = e1 + e3,
e4 ⊢ e2 = e1 + e3,

e2⊥e2 = e1 + e3,
e2⊥e4 = e1 + e3,
e4⊥e4 = e1 + e3.

T 9
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e2 = e1 + e3,

e4 ⊣ e4 = e1 + e3,
e2 ⊢ e2 = e1 + e3,
e2 ⊢ e4 = e1 + e3,
e4 ⊢ e2 = e1 + e3,
e4 ⊢ e4 = e3,

e2⊥e2 = e1 + e3,
e2⊥e4 = e1 + e3,
e4⊥e2 = e1 + e3,
e4⊥e4 = e1

T 10
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e4 = e1 + e3,

e2 ⊢ e2 = e1 + e3,
e4 ⊢ e2 = e1 + e3,
e4 ⊢ e4 = e3,

e2⊥e4 = e1 + e3,
e4⊥e2 = e1 + e3,
e4⊥e4 = e1.

T 11
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e2 = e1 + e3,

e2 ⊢ e2 = e1 + e3,
e2 ⊢ e4 = e1 + e3,
e4 ⊢ e2 = e1 + e3,

e2⊥e2 = e1 + e3,
e2⊥e4 = e1 + e3,
e4⊥e2 = e1 + e3.

T 12
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e2 = e1 + e3,
e4 ⊣ e4 = e1 + e3,

e2 ⊢ e2 = e1 + e3,
e2 ⊢ e4 = e1 + e3,
e4 ⊢ e2 = e1 + e3,

e2⊥e2 = e1 + e3,
e2⊥e4 = e1 + e3,
e4⊥e2 = e1 + e3.

T 13
4 :

e2 ⊣ e1 = e4,
e2 ⊣ e2 = e4,
e3 ⊣ e3 = e4,

e1 ⊢ e3 = e4,
e2 ⊢ e2 = e4,
e3 ⊢ e1 = e4,

e1⊥e1 = e4,
e1⊥e3 = e4,
e3⊥e3 = e4.

T 14
4 :

e2 ⊣ e2 = e1 + e3,
e2 ⊣ e4 = e1 + e3,
e4 ⊣ e2 = e1 + e3,
e4 ⊣ e4 = e1 + e3,

e2 ⊢ e2 = e1 + e3,
e2 ⊢ e4 = e1 + e3,
e4 ⊢ e2 = e1 + e3,
e4 ⊢ e4 = e3,

e2⊥e2 = e1 + e3,
e2⊥e4 = e1 + e3,
e4⊥e2 = e1 + e3,
e4⊥e4 = e1.

T 15
4 :

e2 ⊣ e1 = e3,
e2 ⊣ e2 = e3,
e4 ⊣ e1 = e3,
e4 ⊣ e2 = e3,

e1 ⊢ e1 = e3,
e1 ⊢ e4 = e3,
e2 ⊢ e1 = e3,
e2 ⊢ e4 = e3,

e2⊥e1 = e3,
e2⊥e2 = e3,
e4⊥e1 = e3,
e4⊥e4 = e3.

T 16
4 :

e1 ⊣ e1 = e2 + e4,
e3 ⊣ e1 = e2 + e4,
e3 ⊣ e3 = e2 + e4,

e1 ⊢ e1 = e2 + e4,
e1 ⊢ e3 = e2 + e4,
e3 ⊢ e1 = e2 + e4,
e3 ⊢ e3 = e4,

e1⊥e1 = e2,
e1⊥e3 = e4,
e3⊥e1 = e2,
e3⊥e3 = e2 + e4.
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Proof. Let T be a three-dimensional vector space. To determine an associative trialgebra
structure on T , we consider T with respect to one associative trialgebra operation. Let
C = (T ,⊣) be the algebra

e1 ⊣ e2 = e4, e2 ⊣ e1 = e4, e2 ⊣ e2 = e4.

The multiplication operations ⊢,⊥in T . We use the same method of the proof of the
Theorem 3.2.
Then C = (T ,⊣) it is isomorphic to T 4

4 . The other associative trialgebras of the list of
Theorem 3.4 can be obtained by minor modification of the observation.

4 Derivations of low-dimensional associative trialgebras

Definition 4.1. A derivation of the associative trialgebras T is a linear transformation :
κ : T → T satisfying 

κ(x ⊣ y) = κ(x) ⊣ y + x ⊣ κ(y)
κ(x ⊢ y) = κ(x) ⊢ y + x ⊢ κ(y)
κ(x⊥y) = κ(x)⊥y + x⊥κ(y)

(4)

for all x, y ∈ T .

Let (T ,⊣,⊢,⊥) be an n−dimensional triassocitive algebra with basis {ei} (1 ≤ i ≤ n) and
let κ be a derivation on T For any i, j, k ∈ N, 1 ≤ i, j, k ≤ n, let us put

ei ⊣ ej =
n∑

k=1

γkijek ; ei ⊢ ej =
n∑

k=1

δkijek ; ei⊥ej =
n∑

k=1

ξkijek, andκ(ei) =
n∑

j=1

κjiej .

Then, in term of basis elements, equation (4) is equivalent to


∑n

q=1(γ
k
ijdqk − κkiγ

q
kj − κkjγ

q
ik) = 0, i, j, q ∈ {1, . . . , n}∑n

q=1(δ
k
ijdqk − κkiδ

q
kj − κkjδ

q
ik) = 0, i, j, q ∈ {1, . . . , n}∑n

q=1(ξ
k
ijκqk − κkiξ

q
kj − κkjξ

q
ik) = 0, i, j, q ∈ {1, . . . , n} .

Theorem 4.2. The derivations of two-dimensional associative trialgebras have the fol-
lowing form :

T 3
2 :

(
κ11 0
0 0

)
; T 4

2 :

(
κ11 0
−κ11 0

)
; T 6

2 :

(
0 0
0 κ22

)
; T 7

2 :

(
κ11 0
0 κ11

)
; T 8

2 :

(
1
2κ22 0
κ21 κ22

)
.

Theorem 4.3. The derivations of three-dimensional associative trialgebras have the fol-
lowing form :

T 3
3 :

 0 0 0
κ21 0 κ13
0 0 κ13

 ; T 4
3 :

 0 κ23 κ13
0 κ23 κ23
0 0 0

 ; T 5
3 :

 −κ13 κ13 κ13
0 0 0

−κ33 κ33 κ33

 ;
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T 6
3 :

 κ33 0 0
κ21 2κ33 κ33
0 0 κ33

 ; T 7
3 :

 κ11 0 0
κ21 −κ23 + 2κ11 κ23
κ31 −κ33 + 2κ11 κ33

 ; T 8
3 :

 2κ33 κ12 κ13
0 κ33 0
0 0 κ33

 ;

T 9
3 :

 κ13 κ31 0
0 0 0
κ31 κ32 0

 ; T 10
3 :

 −κ13 + κ22 κ12 κ13
0 κ22

−κ33 + κ22 κ32 κ33

 ;

T 11
3 :

 κ33 − 2κ22 κ33 − 2κ22 0
0 κ22 0
κ31 κ32 κ33

 ; T 12
3 :

 κ11 0 0
0 κ11 0
κ31 κ32 2κ11


Proof. From Theorem 4.3, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
T 8
3 . Applying the systems of equations (4). we get κ21 = κ23 = κ31 = κ32 = 0, κ11 =

2κ33, κ22 = κ33. Hence, the derivations of T 8
3 are given as follows

κ1 =

 2 0 0
0 1 0
0 0 1

,κ2 =

 0 1 0
0 0 0
0 0 0

,κ3 =

 0 0 1
0 0 0
0 0 0

 is basis of Der(T 8
3 ) and

DimDer(T 8
3 ) = 3. The centroids of the remaining parts of three-dimension associative

trialgebras can be carried out in similar manner as shown above.

Theorem 4.4. The derivations of four-dimensional associative trialgebras have the fol-
lowing form :

T 1
4 :


κ33 0 0 0
κ21 2κ33 κ23 0
0 0 κ33 0
κ41 0 κ43 2κ33

 ; T 2
4 :


κ11 0 0 0
κ21 κ11 κ23 0
0 0 κ11 0
κ41 0 κ43 κ11

 ; T 3
4 :


κ11 κ12 0 κ14
0 κ11 0 0
0 κ32 κ11 κ34
0 0 0 2κ11



T 4
4 :


κ33 0 0 0
0 κ33 0 0
0 0 κ33 0
κ41 κ42 κ43 2κ33

 ; T 5
4 :


κ33 0 0 0
0 κ33 0 0
0 0 κ33 0
κ41 κ42 κ43 2κ33

 ; T 6
4 :


κ33 0 0 0
0 κ33 0 0
0 0 κ33 0
κ41 κ42 κ43 2κ33



T 7
4 :


κ33 0 0 0
0 κ33 0 0
0 0 κ33 0
κ41 κ42 κ43 2κ33

 ; T 8
4 :


−κ13 + 2κ44 κ12 κ13 κ14

0 κ44 0 0
−κ33 + 2κ44 κ32 κ33 κ34

0 0 0 κ44

 ;

T 9
4 :


2κ44 κ12 0 κ14
0 κ44 0 0
0 0 2κ22 κ34
0 0 0 κ44

 ; T 10
4 :


2κ44 κ12 0 κ14
0 κ44 0 0
0 0 2κ22 κ34
0 0 0 κ44

 ;

T 11
4 :


κ11 0 0 0
κ21

1
2κ11 κ23 0

0 0 κ11 0
κ41 0 κ43

1
2κ11

 ; T 12
4 :


κ11 0 0 0
κ21

1
2κ11 κ23 0

0 0 κ11 0
κ41 0 κ43

1
2κ11

 ;

T 13
4 :


κ33 0 0 0
0 κ33 0 0
0 0 κ33 0
κ41 κ42 κ43 2κ33

 ; T 14
4 :


2κ44 κ12 0 κ14
0 κ44 0 0
0 κ32 2κ44 κ34
0 0 0 κ44

 ;
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T 15
4 :


κ44 0 0 0
0 κ44 0 0
κ31 κ32 2κ44 κ34
0 0 0 κ44

 ; T 16
4 :


κ33 κ12 0 0
0 2κ33 0 0
0 κ32 κ33 0
κ41 0 κ43 2κ33

 .

Proof. From Theorem 4.4, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
T 6
4 . Applying the systems of equations (4). we get κ12 = κ13 = κ14 = κ21 = κ23 = κ24 =
κ31 = κ32 = κ34 = κ41 = κ42 = κ43 = 0, κ22 = κ11, κ33 = κ11 κ44 = 2κ11. Hence, the
derivations of T 6

4 are given as follows

κ1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

,κ2 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 κ3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

,κ4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


is basis of Der(T ) and DimDer(T ) = 4. The centroids of the remaining four-dimensional
associative trialgebras can be determined in a similar manner as shown above.

Corollary 4.5.

• The dimensions of the derivations of two-dimensional associative trialgebras range
between zero and two.

• The dimensions of the derivations of three-dimensional associative trialgebras range
between zero and five.

• The dimensions of the derivations of four-dimensional associative trialgebras range
between four and five.

5 Centroids of low-dimensional associative trialgebras

5.1 Properties of centroids of associative trialgebras

In this section, we state the following results on properties of centroids of associative
trialgebra T .

Definition 5.1. Let H be a nonempty subset of T . The subset

ZT (H) = {x ∈ H|x • H = H • x = 0} , (5)

is said to be the centralizer of H in T where the • is ⊣,⊢ and ⊥, respectively.

Definition 5.2. Let T be an arbitrary associative trialgebra over a field K. The left,
right and middle centroids Γ⊣

K(T ), Γ⊢
K(T ) and Γ⊥

K(T ) of T are the spaces of K-linear
transformations on T given by

Γ•
K(T ) = {ψ ∈ EndK(T )|ψ(x • y) = x • ψ(y) = ψ(x) • y for all x, y ∈ T } , (6)

where the • is ⊣,⊢ and ⊥ respectively.
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Definition 5.3. Let ψ ∈ EndK(T ). If ψ(T ) ⊆ C(T ) and ψ(T 2) = 0 then ψ is called a
central derivation. The set of all central derivations of T is denoted by C(T ).

Proposition 5.4. Let (T ,⊢,⊣,⊥) be an associative trialgebra. Then

i) Γ(T )Der(T ) ⊆ Der(T ).

ii) [Γ(T ), Der(T )] ⊆ Γ(T ).

iii) [Γ(T ),Γ(T )] (T ) ⊆ Γ(T ) and [Γ(T ),Γ(T )] (T 2) = 0.

Proof. The proof of parts i)− iii) is straightforward by using definitions of derivation and
centroid.

Proposition 5.5. Let T be an associative trialgebra and φ ∈ Γ(T ), κ ∈ Der(T ). Then
φ ◦ κ is a derivation of T .

Proof. Indeed, if x, y ∈ T , then

(φ ◦ κ)(x • y) = φ(κ(x) • y + x • κ(y))
= φ(κ(x) • y) + φ(x • κ(y)) = (φ ◦ κ)(x) • y + x • (φ ◦ κ)(y)

where the • is ⊣,⊢ and ⊥ respectively.

Proposition 5.6. Let T be an associative trialgebra over a field K. Then C(T ) =
Γ(T ) ∩Der(T ).

Proof. If ψ ∈ Γ(T ) ∩Der(T ) the by definition of Γ(T ) and Der(T ) we have
ψ(x • y) = ψ(x) • y + x • ψ(y) and ψ(x • y) = ψ(x) ◦ y = x ◦ ψ(y) for x, y ∈ T . The yieds
ψ(T 2) = 0 and ψ(T ) ⊆ C(T ) i.e Γ(T ) ∩ Der(T ) ⊆ C(T ). The inverse is obvious since
C(T ) is in both Γ(T ) and Der(T ), where the • is ⊣,⊢ and ⊥ respectively.

Proposition 5.7. Let (T ,⊢,⊣,⊥) be an associative trialgebra. Then for any κ ∈ Der(T )
and φ ∈ Γ(T ).

(i) The composition κ ◦ φ is in Γ(T ) if and only if φ ◦ κ is a central derivation of T .

(ii) The composition κ◦φ is a derivation of T if and only if [κ, φ] is a central derivation
of T .

Proof. i) For any φ ∈ Γ(T ), κ ∈ Der(T ), ∀x, y ∈ T . We have

κ ◦ φ(x • y) = κ ◦ φ(x) • y = κ ◦ φ(x) • y + φ(x) • κ(y)
= κ ◦ φ(x) • y + φ ◦ κ(x • y)− φ ◦ κ(x) • y.

Therefore (κ ◦ φ− φ ◦ κ)(x • y) = (κ • φ− φ ◦ κ)(x) • y.
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ii) Let κ ◦ φ ∈ Der(T ), using [κ, φ] ∈ Γ(T ), we get

[κ, φ] (x • y) = ([κ, φ] (x)) • y = x • ([κ, φ] (y)) (7)

On the other hand [κ, φ] = κ ◦ φ− φ ◦ κ and κ ◦ φ,φ ◦ κ ∈ Der(T ). Therefore,

[κ, φ] (x • y) = (κ(φ ◦ (x)) • y + x • (κ ◦ φ(y))− (φ ◦ κ(x)) • y − x • (φ ◦ κ(y)). (8)

Due to (7) and (8) we get x • ([κ, φ])(y) = ([κ, φ])(x) • y = 0.

Let’s now [κ, φ] be a central derivation of T . Then

κ ◦ φ(x • y) = [κ ◦ φ] (x • y) + (φ ◦ κ)(x • y)
= φ(◦κ(x) • y) + φ(x • κ(y))
= (φ ◦ κ)(x) • y + x • (φ ◦ κ)(y),

where • represents the products ⊣,⊢ and ⊥ respectively.

5.2 Centroids of low-dimensional associative trialgebras

Let (T ,⊣,⊢,⊥) be an n−dimensional triassocitive algebra with basis {ei} (1 ≤ i ≤ n) and
let ϑ be a centroid on T For any i, j, k ∈ N, 1 ≤ i, j, k ≤ n, let us put

ei ⊣ ej =
n∑

k=1

γkijek ; ei ⊢ ej =
n∑

k=1

δkijek ; ei⊥ej =
n∑

k=1

ξkijek, andϑ(ei) =
n∑

j=1

ϑjiej .

Then, in term of basis elements, equation (6) is equivalent to


∑n

k=1(γ
k
ijϑpk − ϑkiγ

p
kj) = 0,

∑n
k=1 γ

k
ijϑpk − ϑkjγ

p
ik) = 0, i, j, p ∈ {1, . . . , n}∑n

k=1(δ
t
rsϑqt − ϑtrδ

q
ts) = 0,

∑n
k=1(δ

t
rsϑqt − ϑtsδ

q
rt) = 0, r, s, q ∈ {1, . . . , n}∑n

k=1(ξ
r
pqϑsr − ϑrpξ

s
rq) = 0,

∑n
k=1(ξ

r
pqϑsr − ϑrqξ

s
pr) = 0, p, q, s ∈ {1, . . . , n} .

(9)

Theorem 5.8. The centroids of 2-dimensional complex associative trialgebra are given as
follows :

T 1
2 :

(
ϑ11 0
0 ϑ11

)
; T 2

2 :

(
ϑ22 0
0 ϑ22

)
; T 3

2 :

(
ϑ11 0
0 ϑ11

)
; T 4

2 :

(
ϑ22 0
0 ϑ22

)
;

T 5
2 :

(
ϑ11 0
0 ϑ11

)
; T 6

2 :

(
ϑ22 0
0 ϑ22

)
; T 7

2

(
ϑ11 0
0 ϑ11

)
; T 8

2 :

(
ϑ11 0
0 ϑ11

)
.

Theorem 5.9. The centroids of 3-dimensional complex associative trialgebra are given as
follows :

T 1
3 :

 ϑ11 0 0
0 ϑ11 0
0 0 ϑ11

 ; T 2
3 :

 ϑ11 0 0
0 ϑ11 0
0 0 ϑ11

 ; T 3
3 :

 ϑ11 0 0
ϑ21 ϑ11 0
0 0 ϑ11

 ;
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T 4
3 :

 ϑ33 0 ϑ13
0 ϑ33 0
0 0 ϑ33

 ; T 5
3

 p12 ϑ13 ϑ13
0 −ϑ32 + ϑ33 0

−ϑ32 ϑ32 ϑ33

 ; T 6
3 :

 ϑ33 0 0
ϑ21 ϑ33 ϑ23
0 0 ϑ33

 ;

T 7
3 :

 ϑ32 + ϑ33 0 0
ϑ21 p11 ϑ23
ϑ31 2ϑ11 − ϑ33 ϑ33

 ; T 8
3 :

 ϑ33 ϑ12 ϑ13
0 ϑ33 0
0 0 ϑ33

 ; T 9
3 :

 ϑ33 0 0
0 ϑ33 0
0 ϑ32 ϑ33

 ;

T 10
3 :

 ϑ11 0 0
0 ϑ11 ϑ23
0 0 ϑ11

 ; T 11
3 :

 ϑ33 0 0
0 ϑ33 0
ϑ31 ϑ32 ϑ33

 ; T 12
3 :

 ϑ11 0 0
0 ϑ11 ϑ23
0 0 ϑ11

 .

Where p11 = ϑ32 + ϑ33 − ϑ23, p12 = −ϑ13 − ϑ32 + ϑ33.

Proof. From Theorem 5.9, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
T 12
3 . Applying the systems of equations (9). we get ϑ12 = ϑ13 = ϑ21 = ϑ31 = ϑ32 =

0, ϑ22 = ϑ11, ϑ33 = ϑ11. Hence, the derivations of T 12
3 are given as follows

ϑ1 =

 1 0 0
0 1 0
0 0 1

,ϑ2 =

 0 0 0
0 0 1
0 0 0

 is basis of Der(Γ) and DimDer(Γ) = 2. The

centroids of the remaining three-dimensional associative trialgebras can be determined in
a similar manner as above.

Theorem 5.10. The centroids of 4-dimensional associative trialgebra are given as follows
:

T 1
4 :


ϑ11 0 0 0
ϑ21 ϑ11 ϑ23 0
0 0 ϑ11 0
ϑ41 0 ϑ43 ϑ11

 ; T 2
4


ϑ44 0 0 0
ϑ21 ϑ44 ϑ23 0
0 0 ϑ44 0
ϑ41 0 ϑ43 ϑ44

 ; T 3
4 :


ϑ44 0 0 0
ϑ21 ϑ44 ϑ23 0
0 0 ϑ44 0
ϑ41 0 ϑ43 ϑ44

 ;

T 4
4 :


ϑ22 0 0 0
0 ϑ22 0 0
0 0 ϑ22 0
ϑ41 ϑ42 ϑ43 ϑ22

 ; T 5
4 :


ϑ22 0 0 0
0 ϑ22 0 0
0 0 ϑ22 0
ϑ41 ϑ42 ϑ43 ϑ22

 ;

T 6
4 :


ϑ44 − ϑ12 ϑ12 ϑ13 ϑ14
ϑ44 − ϑ22 ϑ22 ϑ23 ϑ24

0 0 ϑ44 0
0 0 0 ϑ44

 ; T 7
4 :


ϑ44 − ϑ13 ϑ12 ϑ13 ϑ14

0 ϑ44 0 0
ϑ44 − ϑ33 ϑ32 ϑ33 ϑ34

0 0 0 a44

 ;

T 8
4 :


ϑ44 − ϑ13 ϑ12 ϑ13 ϑ14

0 ϑ44 0 0
ϑ44 − ϑ33 ϑ32 ϑ33 ϑ34

0 0 0 a44

 ; T 9
4 :


ϑ44 ϑ12 0 ϑ14
0 ϑ44 0 0
0 ϑ32 ϑ44 ϑ34
0 0 0 ϑ44



T 10
4 :


ϑ44 ϑ12 0 ϑ14
0 ϑ44 0 0
0 ϑ32 ϑ44 ϑ34
0 0 0 ϑ44

 ; T 11
4 :


ϑ44 − ϑ13 ϑ12 ϑ13 ϑ14

0 ϑ44 0 0
ϑ44 − ϑ33 ϑ32 ϑ33 ϑ34

0 0 0 ϑ44

 ;
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; T 12
4 :


ϑ44 − ϑ13 ϑ12 ϑ13 ϑ14

0 ϑ44 0 0
ϑ44 − ϑ33 ϑ32 ϑ33 ϑ34

0 0 0 ϑ44

 ; T 13
4 :


ϑ44 0 0 0
0 ϑ44 0 0
0 0 ϑ44 0
ϑ41 ϑ42 ϑ43 ϑ44

 ;

T 14
4 :


ϑ44 ϑ12 0 ϑ14
0 ϑ44 0 0
0 ϑ32 ϑ44 ϑ34
0 0 0 ϑ44

 ; T 15
4 :


ϑ44 0 0 0
0 ϑ44 0 0
ϑ31 ϑ32 ϑ44 ϑ34
0 0 0 ϑ44

 ; T 16
4 :


ϑ33 0 0 0
ϑ21 ϑ33 ϑ23 0
0 0 ϑ33 0
ϑ41 0 ϑ43 ϑ33

 .

Proof. From Theorem 5.9, we provide the proof only for one case to illustrate the approach
used, the other cases can be carried out similarly with or no modification(s). Let’s consider
T 4
4 . Applying the systems of equations (9). we get ϑ12 = ϑ13 = ϑ14 = ϑ21 = ϑ23 = ϑ24 =
ϑ31 = ϑ32 = ϑ43 = 0, ϑ11 = ϑ22,
ϑ33 = ϑ22 ϑ44 = ϑ22. Hence, the derivations of T 4

4 are given as follows

ϑ1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,ϑ2 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 ϑ3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

,ϑ4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0


is basis of Der(Γ) and DimDer(Γ) = 4. The centroid of the remaining parts of four-
dimensional associative trialgebras can be carried out in a similar manner as shown above.

Corollary 5.11.

• The dimensions of the centroids of two-dimensional associative trialgebras are one.

• The dimensions of the centroids of three-dimensional associative trialgebras range
between one and five.

• The dimensions of the centroids of four-dimensional associative trialgebras range
between one and seven.
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