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ABSTRACT

Polyomino ideals, defined as the ideals generated by the inner 2-minors of a polyomino, are a class of bino-
mial ideals whose algebraic properties are closely related to the combinatorial structure of the underlying
polyomino. We provide a unified account of recent advances on two central themes: the characterization
of prime polyomino ideals and the emerging connection between the Hilbert—Poincaré series and Goren-
steinness of K[P] with the classical rook theory. Some further related properties, as radicality, primary
decomposition, and levelness are discussed, and a Macaulay2 package, namely PolyominoIdeals, is also
presented.
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Introduction

Let X = (xj;)i=1....m be an m x n matrix of indeterminates over a field K. The study

1,...,n

of the ideal gerjle ated by all t—minors of X is a classical topic in Commutative Algebra
and Algebraic Geometry. For any integer 1 < t < min{m,n}, the ideal generated by all
t—minors, called a determinantal ideal, has been extensively investigated. These ideals
play a fundamental role in Algebraic Geometry, as they define several classical varieties,
including the Veronese and Segre embeddings. A standard reference on determinantal
ideals and their associated algebras is the monograph of Bruns and Vetter [4].

Over time, various generalizations of determinantal ideals have been introduced, including
one-sided and two-sided ladder determinantal ideals. However, when I is an ideal gener-
ated by an arbitrary set of {—minors of X, the situation becomes far more intricate, even
in the smallest nontrivial case ¢ = 2. A central problem is to determine when such an
ideal is prime or radical, and to describe its primary decomposition. It is shown in [21,
Corollary 2.2] that I is always radical when X is a 2 x n matrix, and in this case the
authors also provide an explicit minimal primary decomposition. The situation becomes
considerably more subtle as soon as either m or n is at least 3: explicit examples show
that such ideals need not be radical in general. This leads naturally to the problem of
characterizing those arbitrary sets of 2-minors whose ideal is radical. Its significance in
Algebraic Statistics (see [21]) has motivated a systematic investigation of ideals generated
by arbitrary subsets of 2-minors of an m X n matrix.

Within this broader framework, polyomino ideals arise as a particularly rich and struc-
tured subclass of ideals of 2-minors. A polyomino is a finite union of unit squares in
the plane joined edge to edge. Their enumerative and structural properties link them
to tilings, lattice-path combinatorics, and discrete geometry (see [16]). The systematic
study of polyominoes, and more generally of collections of cells, from the perspective of
Commutative Algebra, was initiated by the second author in [38]. To each collection of
cells P one associates the binomial ideal I'p generated by the inner 2-minors of P in the
polynomial ring Sp = K[z, : a € V(P)], where V(P) is the vertex set of P and K is a
field. The corresponding quotient K[P] = Sp/Ip is called the coordinate ring of P. This
construction fits naturally into the general framework of binomial ideals and affine semi-
group rings (see, for example, [20]), and leads to the central theme of relating algebraic
properties of K[P] to combinatorial features of P.

The goal of this paper is to present a unified account of the current understanding of
the primality, radicality, and Hilbert—Poincaré series of polyomino ideals. We review the
characterization of prime polyomino ideals, recent progress on radicality and primary de-
composition, and the surprising appearance of classical combinatorial invariants, rook and
switching rook polynomials, in the description of Hilbert—Poincaré series and Gorenstein-
ness of coordinate rings of polyominoes. Special attention is devoted to the combinatorial
structures driving these phenomena and to open problems at the forefront of current re-
search.

A breakdown of this paper is as follows. Section 1 collects the basic terminology on
collections of cells, inner 2-minors, and the construction of the polyomino ideal I'p. Sections
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2 and 3 are devoted to the study of primality of polyomino ideals. Whether Ip is prime is
strongly influenced by the topological structure of the underlying polyomino, most notably,
by the presence or absence of holes. Polyominoes that contain no holes are called simple
polyominoes, and their primality theory is treated in Section 2. We also discuss the toric
representation of their coordinate rings via edge rings of bipartite graphs, their resulting
normality and Koszulness.

In Section 3 we turn to non-simple polyominoes. We first discuss the obstruction to ob-
taining a toric representation in this setting, as conjectured in [26], and the localization
techniques used in that work. We then outline the toric description of Shikama [43] and
its role in subsequent developments. A central theme of this section is the combinatorial
criterion introduced by Mascia, Rinaldo and Romeo [31], based on zig—zag walks, which
could provide a powerful tool for characterizing non-prime polyominoes. We present the
complete classification obtained for closed path and weakly closed path polyominoes, to-
gether with related results for grid polyominoes [5, 6, 7, 8, 14, 33].

In Section 4, we review what is currently known about the radicality and primary de-
composition of polyomino ideals, topics that remain far less developed than primeness.
We highlight the few available positive results (for example, radicality of certain cross
polyominoes) as well as the polyocollection framework, which provides the first general
methodology for describing minimal primary decompositions of non-prime polyomino ide-
als.

In Section 5, we focus on Hilbert—Poincaré series and their unexpectedly rich connec-
tion with rook theory. Rook polynomials were first introduced in classical enumerative
combinatorics to count non-attacking rook placements on a chessboard. They have since
appeared in a wide range of areas: permutation enumeration, inclusion-exclusion, statis-
tical mechanics, and the study of Ferrers boards and permutation statistics. What makes
them particularly significant in the context of polyomino ideals is that they encode the
h-polynomial of the coordinate ring of a collection of cells. We describe the connection,
first established for L-convex polyominoes in [15], between the Castelnuovo-Mumford reg-
ularity of K[P] and the rook number of P, and the corresponding relation between the
h-polynomial of K[P] and the rook polynomial of P. We then discuss the extension of
these ideas to simple thin polyominoes, closed paths, weakly closed paths, and grid poly-
ominoes, as well as the introduction of the switching rook polynomial, which refines the
rook polynomial in the non-thin case.

In Section 6, we survey recent advances concerning the canonical module and the related
generalizations of the Gorenstein property, namely pseudo-Gorensteiness and levelness.
We first present the characterizations obtained in [42] for simple paths. We then discuss
the combinatorial description of the canonical module of circle closed paths, developed in
[14]. Finally, we consider a particular family of Ferrers diagrams whose Cohen—Macaulay
type is provided by Fuss—Catalan numbers, as established in [45].

We conclude with Section 7, where we illustrate the combinatorial and algebraic functions
implemented in the Macaulay2 package PolyominoIdeals [10, 17].



54 Advances in Polyomino Ideals

1 Required terminologies related to the collection of cells

This section is devoted to introducing the definitions and notations related to collections
of cells and the associated ideals of 2-minors.

Let (i,7), (k,1) € Z?. We define a partial order on Z? by setting (i,7) < (k,!) if and only
if i <kandj <l Givena= (i,j) and b = (k,l) in Z? with a < b, we define the set

[a,b] = {(m,n) €Z* | i<m <k, j<n<l}

as an dnterval in Z2. If i < k and j < [, then [a, b] is called a proper interval. In this case,
we refer to a and b as the diagonal corners of [a,b], and define ¢ = (i,1) and d = (k, j) as
the anti-diagonal corners. If j =1 (respectively, i = k), then a and b are said to be in a
horizontal (respectively, vertical) position.

A proper interval C' = [a,b] with b = a + (1,1) is called a cell of Z?. The points a, b, c,
and d are referred to as the lower-left, upper-right, upper-left, and lower-right corners of C,
respectively. We denote the set of vertices and edges of C by V(C) ={a,b,c,d}, E(C)=
{{a,c},{c,b},{b,d},{a,d}}. For a collection of cells P in Z?2, the sets of vertices and edges
are defined as V(P) = Upep V(C), E(P) = Ugep E(C). The rank of P, denoted by
|P|, is the number of cells in P. By convention, the empty set is considered a collection
of cells of rank 0.

Consider two cells A and B in Z?, with lower-left corners a = (i,j) and b = (k,1),
respectively, and suppose that a < b. The cell interval [A, B], also referred to as a
rectangle, is the set of all cells in Z? whose lower-left corners (r, s) satisfy i < r < k and
1 <s<lL

Let P be a collection of cells. The cell interval [A, B] is called the minimal bounding
rectangle of P if P C [A, B] and there exists no other rectangle in Z? that properly
contains P and is properly contained in [A, B] (see Figure 2). If the corners (i,j) and
(k,1) are in horizontal (respectively, vertical) position, we say that the cells A and B are
in horizontal (respectively, vertical) position.

An interval [a,b] with a = (i,7), b = (k,j), and i < k is called a horizontal edge interval
of P if the sets {(¢,7), (¢ + 1,7)} are edges of cells of P for all ¢ = 4,...,k — 1. If
{(i = 1,7),(i,4)} and {(k,J),(k+1,7)} do not belong to E(P), then [a,b] is a mazimal
horizontal edge interval of P. Vertical and maximal vertical edge intervals are defined
analogously.

A finite collection of cells P is said to be weakly connected if, for any two cells C and D in P,
there exists a sequence of cells C: C' = C4,...,Cp, = D in P such that V(C;)NV(Ci11) # 0
for all i = 1,...,m — 1. For an illustration, see Figure 1 (B).

If P = (J;_, Pi, where each P; is a weakly connected collection of cells and V (P;) NV (P;) =
() for all 7 # j, then Pq,...,Ps are called the weakly connected components of P. The
collection of cells in Figure 1 (C) has three weakly connected components.

A finite collection of cells P is called connected, or simply a polyomino, if for any two cells
C and D in P, there exists a sequence of cells C: C = Cq,...,(Cy, = D in P such that
C; N Ci41 is an edge shared by both C; and C;4q for all i = 1,...,m — 1. Such a sequence
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is called a path from C to D in P. An example of a polyomino is shown in Figure 1 (A).
Moreover, if we denote by (a;, b;) the lower left corner of C; for all i = 1,...,m, then C
has a change of direction at Cy, for some 2 < k <m — 1, if ax_1 # axy1 and by_1 # br11;
in this case, {Ci_1,Ck, Cr+1} is said to be the set of the cells of a change of direction.

A subcollection P’ C P is called a connected component of P if P’ is a polyomino and is
maximal with respect to set inclusion; that is, for any A € P\ P’, the union P’ U {A} is
not a polyomino. For instance, the collection of cells in Figure 1 (B) has two connected
components P; and Ps.

O
i O E

P,
| 7)1 PZ | | '

(a) (b) (c)

Figure 1: A polyomino, a weakly connected collection of cells with two connected compo-
nents, and a collection of cells with three weakly connected components.

A collection of cells P is said to be simple if, for any two cells C and D not in P, there
exists a path of cells in the complement of P connecting C' to D. Roughly speaking, simple
polyominoes are the polyominoes without holes. The collections in Figures 1 (A) and (B)
are not simple, while the one in (C) is.

A collection of cells P is said to be row convex (respectively, column convez) if, for any two
cells A and B of P in horizontal (respectively, vertical) alignment, the entire cell interval
[A, B] lies in P. If P is both row and column convex, it is called convez. In Figure 1 (C),
the collection P = P; U Py U P3 is column convex but not row convex. Moreover, each
weakly connected component of P is convex.

Among the convex polyominoes, we have some very well-studied sub-classes. Let P be a
convex polyomino with minimal bounding rectangle [A, B]. Then:

1. P is called a Ferrer diagram if at least three corner cells of [A, B] are in P (Figure 2

(A)).
2. P is called a stack if two adjacent corner cells of [A, B] belong to P (Figure 2 (B)).

3. P is called a parallelogram if two opposite corner cells of [A, B] belong to P (Figure 2

(©))-

4. P is called directed convex if at least one corner cell of [A, B] belongs to P (Figure 2

(D).

It follows directly from the above definitions that every Ferrer diagram, stack polyomino,
and parallelogram polyomino is a directed convex polyomino.
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Figure 2: A Ferrer diagram, a stack, a parallelogram and a directed convex.

1.1 Ideals of inner 2-minors of collections of cells and polyomino ideals.

Let P be a collection of cells, and let Sp = K[z, : v € V(P)] be the polynomial ring
associated to P, where K is a field. A proper interval [a, b] is called an inner interval of P
if all cells in P, belong to P. If [a,b] is an inner interval of P, with diagonal corners a
and b and anti-diagonal corners ¢ and d, then the binomial z,x, — x. 4 is called an inner
2-minor of P. The ideal Ip C Sp generated by all inner 2-minors of P is called the ideal
of 2-minors of P. If P is a polyomino, then Ip is referred to as the polyomino ideal of P.
The quotient ring K[P] = Sp/Ip is called the coordinate ring of P.

For example, let P be the polyomino represented in Figure 3. The ideal Ip is generated

€23 33
T2 T2 32
11 T2 T3]

Figure 3: A polyomino P.
by the following binomials:
L1122 — T12221, L21L32 — L2231, L22T33 — T23T32, L11L32 — L1231, L21L33 — T23T31-

For ease of notation, we say that a polyomino P enjoys a property (P) if its polyomino
ideal Ip, or equivalently its coordinate ring K[P], satisfies property (P).

Remark 1.1. Let P be a collection of cells, and let Q be the collection obtained from P by a
symmetry of the plane—i.e., by a translation, rotation, reflection, or glide reflection. Then

~

Ip and Ig define the same ideal up to a relabeling of variables; in particular, K[P] = K[Q)].

2 Simple polyominoes and their toric representation

Among all classes of polyominoes, simple polyominoes admit the most complete and coher-
ent algebraic description. Their ideals of inner 2-minors coincide with toric ideals arising
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from naturally associated bipartite graphs, a correspondence that allows one to deduce
important structural properties such as normality, Cohen—-Macaulayness, and Koszulness.
In this section we present the toric viewpoint for simple polyominoes and review the results
that place them among the best understood classes of polyominoes.

Edge rings and toric ideals of bipartite graphs

Let G be a finite simple graph with vertex set V(G) = {z1,...,%m}, identified with
variables in the polynomial ring K[z1, ..., zp]. For each edge {z;,z;} € E(G) we introduce
a new variable ¢;;, and we consider the polynomial ring T = K{[t;; : {zs,z;} € E(G)]. The
edge ring of G is the K-subalgebra of the polynomial ring Klz1, ..., x| generated by all
quadratic monomials corresponding to edges,

K[G] = K[z;xj : {zs,2;} € E(G)].
Equivalently, K[G] is the image of the K-algebra homomorphism
w:T—>K[l’1,...,IL‘m], T/)(tij):l‘il‘j.

The kernel I = ker(t) is called the toric ideal of G; it is a prime ideal generated by
binomials corresponding to combinatorial relations among the edges. When G is bipartite,
the structure of I is particularly transparent. A cycle C of even length in G, written as
Tiys Tigs - - -, Tig,» Tiy , Gives rise to a binomial

fC’ = biyigtigiq =~ bigp_1io, — ligigligis = iy -

It is well known that for bipartite graphs, the toric ideal I is generated by the binomials
attached to all even cycles of G, for example see [20, Lemma 5.9]. Moreover, I is generated
by quadrics if and only if every even cycle of length greater than four has a chord, i.e., if
and only if G is weakly chordal [25].

Toric representation of simple polyominoes

Let P be a polyomino. Let {Vi,...,V,,} be its maximal vertical edge intervals and
{Hy,...,H,} its maximal horizontal edge intervals. The associated bipartite graph Gp
has vertex set

V(G'p) = {2}1, ce ,’Um} (] {hl, e hn},
where v; corresponds to V; and hj to H;. There is an edge {v;,h;j} € E(Gp) precisely
when V; N Hj is a vertex of P. This defines a K-algebra homomorphism
&p: Sp — K[Gp], with Op(x,) = vih; whenever V; N H; = {a}.

The kernel of ®p, that is ker(®p), is the toric ideal of the bipartite graph Gp.

A key feature of simple polyominoes is that the combinatorics of their maximal edge
intervals forces Gp to be weakly chordal, so that its toric ideal is generated by quadratic
binomials corresponding exactly to the inner 2-minors of P.
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Theorem 2.1. [39, Theorem 2.2] If P is a simple polyomino, then Ip = ker(®p), and Ip
18 prime.

The proof relies on two facts: (i) the graph Gp associated with a simple polyomino is
weakly chordal, and (ii) the toric ideal of the edge ring of a weakly chordal bipartite graph
admits a quadratic Grobner basis [25]. Since these quadratic binomials correspond exactly
to the inner 2-minors of P, one obtains Ip = Jp.

Before the toric description was established, Herzog, Qureshi, and Shikama [22] introduced
the class of balanced polyominoes and showed that for such P, the ideal Ip is the lattice
ideal of a saturated lattice; in particular, Ip is prime and they computed its universal
Grobner basis. Later, Herzog and Saeedi Madani [23] proved that balanced polyomi-
noes coincide exactly with simple polyominoes. This provides an alternative route to the
primality of Ip for simple polyominoes.

Combining the results in [22, 23, 39] we obtain the following algebraic properties of simple
polyominoes.

1. Ip is prime, and ht(Ip) = |P].

2. The universal Grobner basis of Ip consists of squarefree binomials.
3. Ip has a quadratic Grobner basis with respect to a suitable order.
4. K[P] is a normal Cohen-Macaulay domain.

5. K[P] is Koszul.

Following the same approach as in [39], Cisto, Navarra, and Utano [7, Theorem. 3.3]
generalized the result of [39] to simple and weakly connected collections of cells.

3 Characterization of non-simple prime polyominoes

Polyominoes with one or more holes are called multiply connected polyominoes, or non-
simple polyominoes. We will use the terminology “non-simple” throughout this section. As
explained in Section 2, the coordinate ring of a simple polyomino admits a toric description
via the edge ring of a naturally associated bipartite graph. A natural question is whether
such a toric representation can be extended to non-simple polyominoes. The following
conjecture, formulated by Hibi and Qureshi [26], suggests that this is not possible.

Conjecture 3.1 ([26]). A polyomino ideal Ip arises as the toric ideal of the edge ring of
a finite simple graph if and only if P is simple.

Let I = [a,b] C N? be a proper interval and let P; denote the rectangular polyomino
determined by I. If P C P; is a subpolyomino, following [26] we define the complement
polyomino

PC = Pr\P.
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Whenever P¢ is a polyomino (for example, when P is convex and does not meet the
boundary of Pr), it is non-simple and has exactly one hole corresponding to the removed
region P, see Figure 4 (A).

Figure 4: Polyominoes P¢.

Theorem 3.2. Let P C Pr be a simple polyomino and let P¢ = Pr\ P. Then Ipe cannot
arise as the toric ideal of the edge ring of any finite simple graph, [26, Theorem 4.1].

The proof exploits the fact that toric ideals of graphs necessarily contain binomial x,xp —
zcxq (See Figure 4 (B)), while this binomial does not appear in Ipe.

The main result of [26] shows that, although the graphical toric interpretation breaks
down, the non-simple polyominoes P¢ obtained from convex P still have prime ideals.

Theorem 3.3. Let P C Pr be a convex polyomino such that P¢ = P\ P is a polyomino.
Then Ipe is a prime ideal, [26, Theorem 3.1].

Sketch of proof. Choose the interval I = [a,b] so that P is a convex subpolyomino of Py,
and let ¢, d be the anti-diagonal corners of I with b and ¢ in horizontal position. Using a
Grobner basis criterion for polyomino ideals given in [38], one first observes that z. does
not divide the initial term of any binomial in the reduced Grébner basis of Ip, with respect
to a suitable lex order, [26, Corollary 2.2]. Hence z. is a non-zero divisor on Sp,/Ip,.

Localizing at x. yields an injective map
Spe/Ipe — (Spe/Ipe)s. = (Spe)ae/(IPe ).

The key step is to identify the localized ideal (Ip,),, with the polyomino ideal of a simple
subpolyomino P’ of P¢, i.e.
(Ipc)wc = IPI (S’])C)me

Since P’ is simple, Ips is prime by the results discussed in Section 2. Therefore (Spe),,/
(Ipe)s, is an integral domain. Injectivity of the localization map then implies that Spe/Ipe
is a domain. O

By [26, Corollary 2.2], the ideal Ipe admits a reduced quadratic Grobner basis. This yields
the following structural properties.
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Theorem 3.4. Let P be a convex polyomino such that P C Py and P¢ = Pr\ P is a non-
simple polyomino. Then the coordinate ring K[P€] is a Koszul, normal, Cohen—Macaulay
domain.

Proof. By [26, Corollary 2.2], Ipc has a squarefree quadratic Grobner basis; hence K[P€|
is Koszul. Normality follows from [20, Corollary 4.26]. Cohen—Macaulayness follows from
Hochster’s theorem [3, Theorem 6.3.5], since toric rings defined by squarefree initial ideals
are Cohen—Macaulay. O

Remark 3.5. The work of Hibi and Qureshi provided the first infinite family of non-simple
polyominoes whose polyomino ideals are prime. Their argument is entirely different from
the toric description used in the simple case, relying instead on localization techniques that
cructally depend on the convexity of the removed region P. The method fails when P is
simple.

It is well known that a binomial prime ideal is a toric ideal (of a suitable toric ring).
Therefore, it is natural to ask what is the toric representation of the coordinate ring of
the class of prime non-simple polyominoes provided in [26]. In [43], Shikama constructed
an explicit toric representation for these coordinate rings as follows.

Let I = [a,b] and P¢ = P; \ P, where P is a convex polyomino, as before. Suppose that
‘P does not intersect the boundary cells of Py, that is P¢ has exactly one hole determined
by P. In Shikama’s setup, let A be the collection of intervals of I of two types:

(i) a special interval I. = [a, €], where e is the lowest among all leftmost outside corners

of P;

(ii) all maximal horizontal and vertical edge intervals of P.

For each I € A introduce a variable uy, and define

alv) = H uy,

IeA
vel

for all v € V(P). The toric ring associated to P is
Tp = Kla(v) |ve V(P)] C Klur | I € Al

Let ¢: Sp — Tp be the K-algebra homomorphism defined by ¢(z,) = a(v), and denote
the kernel of ¢ by Jp.

Theorem 3.6. [43, Theorem 2.3] Let P¢ be a non-simple polyomino obtained by removing
a convex polyomino P from the rectangle Pr. Then Ip = Jp. In particular, K[P] = Tp is
a toric ring and Ip is prime.

Shikama proves that Jp is generated by quadratic binomials, each corresponding to an
inner 2-minor of P, so that Ip = Jp holds.

This toric parametrization forms the basis of later developments, including the zig—zag
walk criterion and the characterization of further families of non-simple polyominoes with
prime polyomino ideals.
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3.1 Zig—zag walks and a necessary condition for primality

The next step in the study of non-simple polyominoes is due to Mascia, Rinaldo and
Romeo [31]. They consider arbitrary non-simple polyominoes and introduce a combina-
torial configuration of inner intervals, called a zig—zag walk, whose presence always forces
the polyomino ideal to be non-prime.

Definition 3.7 (Zig—zag walk). Let P be a polyomino. A zig-zag walk of P is a finite
sequence of distinct inner intervals

W Il,...,Ig

with £ > 2 such that, for each i = 1,...,£, the interval I; has either the diagonal corners
vi, 2; and anti-diagonal corners u;,vi41 or the anti-diagonal corners v;, z; and diagonal
corners ui, vit+1, and the following conditions are satisfied:

(Z) LNl = {UiJrl} fori=1,....0—1and 1 NI, = {Ul = ’Ug+1},‘
(ii) v; and viyq lie on the same (horizontal or vertical) edge interval of P for all i;

(7ii) for any distinct i,j there is no inner interval J of P containing both z; and z;.

Figure 5 shows an example of a zig-zag walk.

us 23
Z9 U3 Vg Uy
I3
I
I L
U2| U2 V1 |*R4
Z1 uy

Figure 5: An example of a zig-zag walk.

Condition (ii) forces the sequence of intervals to alternate across edge intervals, which
explains the name “zig-zag”. From (i) and a simple parity argument one deduces that
the number ¢ of intervals in a zig—zag walk is always even. Moreover, if v; is the diagonal
corner of [;, then v;y; is an anti-diagonal corner of I;11, see [32, Remark 3.3].

Each zig—zag walk gives rise to a distinguished binomial. More precisely, if W : I1,..., I,
is a zig—zag walk as above, with notation as in Definition 3.7, set

l l
fw = Tlzs = ] 2w (1)
k=1 k=1

Mascia, Rinaldo and Romeo show that fyy € Jp and that it becomes a zero-divisor modulo
Ip.
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Proposition 3.8. [32, Proposition 3.5] Let P be a polyomino and Ip its polyomino ideal.
If P admits a zig—zag walk VW, then the elements

Tyyyoos Ty, and  fyy

are zero divisors in K[P], and z,, fyy € Ip for alli=1,... L.

As a consequence one obtains an intrinsic obstruction to primality.

Corollary 3.9. [32, Corollary 3.6] Let P be a polyomino. If P contains a zig—zag walk,
then Ip is not a prime ideal.

The authors systematically enumerated non-simple polyominoes up to rank 14 and tested
primality of their polyomino ideals using Macaulay?2. In this range, the zig—zag obstruction
is the only obstruction to primality.

Theorem 3.10. [32, Proposition 3.9] Let P be a polyomino with rank(P) < 14. Then the
following conditions are equivalent:

1. Ip is a prime ideal;

2. P contains no zig—zag walk.

The above computations lead to the following general conjecture.

Conjecture 3.11. [32, Conjecture 4.6] Let P be a polyomino. The following conditions
are equivalent:

1. Ip is a prime ideal;

2. P contains no zig—zag walk.

There are two prominent classes of polyominoes for which the above conjecture holds,
namely, closed path (also known as thin cycles) and grid polyominoes.

Grid polyominoes

Grid polyominoes are non-simple polyominoes obtained by removing a rectangular grid of
pairwise disjoint rectangles from a large rectangle, under strong alignment conditions on
the positions of the holes. The following definition is equivalent to [32, Definition 4.1].

Definition 3.12 (Grid polyomino). Let I = [(1,1), (m,n)] C N? and let

P — P[\ U Hija

i€[r], j€[s]

where each Hyj is a rectangle [a;j, bij] strictly contained in I, and the family {H;;} satisfies
the following alignment conditions:
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1. for fized i, all H;; have the same x-coordinates of their vertical sides;
2. for fized j, all H;j have the same y-coordinates of their horizontal sides;

3. consecutive holes in a row or column are separated by exactly one layer of cells.

Then P is called a grid polyomino. See Figure 6 for an example of a grid polyomino.

Figure 6: A grid polyomino.

Grid polyominoes are non-simple and may contain many holes, but their highly regular
structure prevents the existence of zig—zag walks. Figure 6 displays an example of a grid
polyomino. To show that grid polyominoes are prime, the authors in [32] generalized
Shikama’s construction of toric rings [43] to an arbitrary non-simple polyomino.

Let P be a polyomino. Denote by {V;}icr and {H,} cs the sets of maximal vertical and
horizontal edge intervals of P, respectively, and by Hjy,..., H, the holes of P. For each
hole Hy, let e = (ik, ji) be its lower-left corner, and set

Fe = {(G,5) € V(P) i < i, J < ji}-
Introduce variables v; for V;, h; for H; and wy, for Fj, and define
d}: V(P) —>T,:K[Ui7hjawk |/L'€Ia .] € J’ k?:].,...,’l“]

by

P(a) = H hiv; - H W

acH;NV; acFy,

Let
Th = K[u(a) |a e V(P) C T

be the associated toric ring, and let Jp, denote the kernel of the surjective homomorphism

' Sp=Klzg:a€V(P)] — Tp, ' (24) = ¥(a).

By construction Jp, is a prime binomial ideal containing the polyomino ideal Ip. A key
observation in [32, Lemma 3.1] is that the quadratic part of J}, coincides with I'p. Thus
Jp may be viewed as a canonical toric enlargement of Ip.
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It remains an open and challenging problem to describe the elements of Jp \ Ip. It
is observed in [32, Remark 3.7] that if P contains a zig-zag walk, then its associated
binomial defined in (1) belongs to Jp. However, not every element of J \ Ip is of this
form, as illustrated in [32, Example 3.8].

Given a grid polyomino P, using a redundancy criterion for binomials of degree at least
3, generalizing a lemma used by Shikama in [43], the authors in [32] proved that every
irredundant binomial in Jp has degree 2. In particular, all higher-degree binomials in J}
are redundant.

Theorem 3.13. Let P be a grid polyomino. Then Ip = Jp and, in particular, Ip is a
prime ideal, [32, Theorem].

Closed path polyominoes.

Closed path polyominoes were introduced and studied in detail by Cisto and Navarra [5].
Informally, a closed path is a non-simple polyomino with exactly one hole, obtained by
arranging the cells in a cyclic fashion so that they form a loop. The following definition
formalizes this notion.

Definition 3.14. Let Ay, As,..., A, be a sequence of distinct cells with n > 5. The
sequence is called a closed path if it is a polyomino and satisfies the following conditions:

1. consecutive cells share an edge; that is, A; N A;+1 is a common edge of both cells for
alli=1,...,n, and

2. dfie{l,...nyandj¢ {i—2i—1,i i+1,i+2}, then A;NA; =0.
Here boundary indices are interpreted cyclically by setting A_1 = Ap—1, Ag = An, Apt1 =

Ay, and Apio = As. See Figure 7 for an example of a closed path polyomino, on the left,
and a non-closed path polyomino, on the right.

‘ ‘ i—1i—2

i+2(i+1 4

Figure 7: A closed path and a non-closed path.

It follows from the definition that the closed paths are thin polyominoes and can be
regarded as “necklaces of cells” surrounding a hole. To give a complete characterization
of prime closed path polyominoes, the following possible configurations within them play
an important role.
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e An L-configuration, consisting of a path of five cells C, ..., C5 such that Cy,Co, Cs
and Cs, Cy, C5 form two orthogonal blocks; see Figure 8 (A).

o A ladder with at least three steps, namely a sequence of maximal horizontal or vertical
blocks arranged alternately so that each block meets the next in a single vertex, and
the orientation switches at every step; see Figure 8 (B).

04 ay bl Bz
C3| Cy| Cy B,

(a) (b)

Figure 8: A closed path with an L-configuration and another one with a ladder of three
steps.

In [5], a complete characterization of prime closed path polyominoes, and an affirmative
answer to Conjecture 3.11 is provided. Below we briefly sketch these ideas.

Theorem 3.15. Let P be a closed path polyomino. Then the following conditions are
equivalent:

1. Ip is prime;
2. P contains no zig—zag walks;

3. P contains either an L-configuration or a ladder with at least three steps.

Sketch of proof. The implication (1) = (2) follows from Corollary 3.9.

For (2) = (3), assume that P is a closed path polyomino that contains no zig—zag walks.
A detailed combinatorial analysis shows that this geometric restriction forces the presence
of a controlled local configuration around the hole: namely, P must contain either an
L—configuration or a ladder with at least three steps. This is established in [5, Proposi-
tion 6.1].

To prove (3) = (1), one constructs an explicit toric parametrization of K[P] using a
refinement of Shikama’s toric method for non-simple polyominoes [43], introducing a single
additional “hole variable.”” Assume that P contains either an L—configuration or a ladder
with at least three steps. Let A be the set of vertices singled out by this configuration
(the vertices inside the L—shape in the first case, or the vertices inside the ladder in the
second). As usual, let {V;};cr and {H;};cs be the sets of maximal vertical and horizontal
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edge intervals of P, with associated variables {v;};cr and {h;};jes, and let w be an extra
variable.

Define a map

(62 V(P) — K[{Ui, h]7 w}iEI,jEJL
by

a(r) = vih; w”,

whenever VN H; = {r}, where k =0ifr ¢ Aand k =1if r € A.
Let Tp = Ka(v) : v € V(P)] and let J be the kernel of the surjective K-algebra homo-
morphism

¢:Sp —Tp,  ¢(xy) = av),

for all v € V(P). It is proved in [5, Theorem 4.2 and Theorem 5.2] that Ip = J by
expressing binomials in J as combinations of quadratic binomials corresponding exactly
to the inner 2-minors of P. Hence Ip is the defining toric ideal of Tp, and in particular
it is prime. [

In subsequent work with Utano [7], this strategy is extended to weakly closed path poly-
ominoes (see Figure 9 for an example), giving further evidence that zig—zag walks play a
central role in the characterization of prime polyomino ideals.

Figure 9: A weakly closed path.

Moreover, we note that, in connection with primality, the Cohen—Macaulayness of closed
paths has also been investigated in [11], by means of the aforementioned theorem of Sturm-
fels and Hochster. The case in which the coordinate ring of a closed path or a weakly
closed path fails to be a domain is studied in [7] and [33], respectively. In conclusion, in
accordance to the final paragraph in [7], we have the following.

Question 3.16. Let P be a collection of cells. Then, is K[P] Cohen—Macaulay?

3.2 Quadratic Grobner bases and primality

Mascia, Rinaldo and Romeo, in [31], developed an interesting criterion to establish the
primality of polyomino ideals through the existence of quadratic Grobner bases of Ip.
Their method is purely combinatorial and is based on Grobner bases with respect to
certain graded reverse lexicographic orders naturally induced by the geometry of P. They
introduced eight graded reverse lexicographic orders on Sp, each obtained by reading the
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vertices of P according to one of the eight directions in the plane, and for each such order
<, they give an explicit combinatorial criterion ensuring that the inner 2-minors form a
reduced Grobner basis of Ip. These criteria are expressed through eight local geometric
configurations (1), ..., (ms) (see [31, Definition 3.3 and Table 2] ).

Given any vertex v € V(P), they refine a chosen order <; to a new order <; , by declaring
Zy to be the smallest variable while keeping the relative order of all other variables. Their
central structural result shows:

o If the inner 2-minors form a reduced Grébner basis of Ip for some <,

e and if every vertex v fails at least one of the conditions 7 corresponding to that
order,

then the inner 2-minors also form a reduced Grobner basis with respect to the modified
order <;, for every vertex v. Consequently, Ip = (Ip : u) for every monomial u € Sp.
Since (Ip : u) equals the lattice ideal of the saturated lattice A whose basis corresponds
to the cells in P, it follows that Ip itself is prime.

As an application of this approach, it is shown that Ip is prime when P corresponds
to subgrid polyominoes, obtained by removing certain cells from a grid polyomino while
preserving connectivity.

Moreover, by using [31, Corollary 3.3], Koley, Kotal and Veer obtained the following in
[28].

Proposition 3.17. [28, Proposition 5.4] Let P be a thin polyomino such that if two
mazimal inner intervals of P intersect, then their intersection is a cell. Then Ip is a
prime ideal.

4 Radicality and Primary Decomposition of Polyomino Ide-
als

Although the theory of polyomino ideals has developed extensively in recent years, most
work has focused on understanding when such ideals are prime. In contrast, much less is
known about radicality and about the primary decompositions of polyomino ideals that
are not prime. At present, no example is known of a polyomino ideal that is prime but
not radical, and it is natural to ask:

Question 4.1. Are all polyomino ideals radical?

A standard criterion for radicality asserts that if an ideal has a squarefree initial ideal
with respect to some monomial order, then the ideal itself is radical. The first systematic
study of radicality for a non-prime class of polyominoes using this approach was carried
out in [18]. They introduced a class of non-simple polyominoes, called cross polyominoes,
defined as a union of two rectangles satisfying certain intersection conditions (see [18,
Definition 3.2]). Typically, cross polyominoes are non-prime. The authors in [18] proved
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that if the intersection consists of a single cell, then the associated polyomino ideal is
radical. Their proof constructs a Grobner basis whose initial ideal is squarefree with
respect to a suitable monomial order, and then applies the general radicality criterion.

As discussed in Section 2, if P is a simple polyomino, then Ip admits a squarefree ini-
tial ideal. The same phenomenon occurs for most known classes of non-simple prime
polyominoes. This naturally raises the question of whether polyomino ideals admit a
squarefree universal Grobner basis. A negative answer was given in [5, Remark 16],
where an explicit example is provided of a polyomino shown in Figure 10, whose uni-
versal Grobner basis contains binomials with non-squarefree monomials, as the binomial
f = T11203T32%34T41 — x14x22x§1x43 attached to the vertices in red and yellow.

4 o o P
3 O )

2 O

1 [, A O \

0 1 2 3 4

Figure 10: A closed path.

Such examples show that, even when a polyomino ideal is radical, its universal Grébner
basis need not consist of squarefree binomials.

Very recently, Koley, Kotal, and Veer initiated the study of radicality in connection with
the Knutson property in [28]. In fact, in arbitrary characteristic, Knutson ideals have
squarefree initial ideals and are therefore radical.

Polyocollections and primary decompositions

A recent contribution to the study of radicals and primary decompositions of polyomino
ideals is due to Cisto, Navarra and Veer [9]. They introduced the notion of polyocollections
as a combinatorial generalization of collections of cells.

Definition 4.2. Let C be a collection of intervals in Z2. We say that C is a polyocollection
if for all I,J € C with I # J, we have I NJ # 0 and one of the following holds:

1. INJ is a common edge” of I and J.

2. For all F € E(I) and for all G € E(J), we have |[F NG| < 1.

*

If [a, b] is a proper interval, and ¢, d are its antidiagonal vertices, then E([a,b]) = {[a, c], [a,d], [b,d], [b, ]}
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For example, the collection

G ={l(1,1),(3,3)], [(1,3), (3,5)}, [(3,1), (5,3)], [(3,3), (5,5)]; [(2,2), (4, 4)]},

displayed in Figure 11 (A), is a polyocollection. In contrast,

C2 = {[(1,2),(3,4)], [(2,1), (4,3)], [(4, 1), (5,2)], [(4,2), (5,3)]},

displayed in Figure 11 (B), is not a polyocollection.

3 L] 3
2 . ° 2
1 - e .

(a) (b)
Figure 11: A polyocollection on the left and a non-polyocollection on the right.
To each polyocollection C, the authors associate a binomial ideal I, extending in a natural
way the classical construction of polyomino ideals. They provided a unified framework
to primary decomposition, in terms of the so-called admissible sets and the lattice ideals

of suitable sub-collections derived from C. In particular, admissible sets are defined as
follows:

Definition 4.3. A subset X C V(C) is called an admissible set of C if, for every inner
interval I of C, either X NV (I) =0 or X NV (I) contains the boundary of an edge of I.

Using this notion and several algebraic techniques coming from [19] and from lattice ideal
theory, they prove the following result:

Theorem 4.4. [9, Proposition 3.12, Theorem 3.13] Let P be a polyomino (or, more
generally, a polyocollection). Then, for every minimal prime ideal p of Ip, there exists an
admissible set X such that

p=Jx :={x,|a€X})+ Lpx),

where Lp(x) is the lattice ideal of the polyocollection P having the set {I inner interval of C |
V(I)NX =0} as the set of inner intervals.

Hence,
Vip = ﬂ Jx,
X

where the intersection runs over all admissible sets X of P.
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For our purposes, the key point is that this framework provides the first systematic method
for describing a primary decomposition of non-prime polyomino ideals. In particular, the
authors completely determine the minimal primary decomposition of non-prime closed
path polyominoes.

If P is a closed path containing a zig—zag walk (equivalently, I'p is not prime by Theo-
rem 3.15), then [9, Theorem 4.19] shows that

Ip =p1Np2,
where both p; and po are binomial prime ideals of height |P|. In particular, p; is the

toric ideal appearing in Mascia—Rinaldo—Romeo [31], while pg is a combinatorially defined
monomial-binomial ideal (look at [9, Notation 4.7]).

For instance, the non-prime closed path in Figure 12 (A) has
p1 = Ip + (TaTpxeTq — TpTeTrxs), p2 = (2, : a is a black point).
The non-prime closed path in Figure 12 (B) has
p1 = Ip + (fyy : W is a zig-zag walk of P),

p2 = (24 : a is a green point) + (binomials attached to the red intervals).

re —O0—0—
C
d
o—o—o 4
q
o o
—eo—o
O —%—9 )
o
a p

(a) (b)

Figure 12: Non-prime closed paths.

These results provide the strongest evidence so far that the primary decomposition of
polyomino ideals is governed entirely by combinatorics. Describing the minimal primary
decomposition of an arbitrary non-prime polyomino in terms of the combinatorics of the
polyomino itself remains a challenging and largely open problem.
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5 Hilbert-Poincaré series and rook polynomial theory

A recent line of research has discovered a mnovel connection showing that the Hilbert—
Poincaré series of K[P] is closely related to the rook polynomial and one of its variants,
namely the switching rook polynomial. To describe this connection, we first recall the
definitions of the h-polynomial and the Castelnuovo-Mumford regularity of a graded ideal.
Let R = K[x1,...,x,] be a polynomial ring over a field K, and let I be a homogeneous
ideal of R. The Castelnuovo—Mumford regularity (or simply regularity) of I is defined by

reg(I) = max{j | Bi i+; # 0 for some i }.

where ; ; denotes the (i, j)-th graded Betti number of I. Moreover, one has reg(R/I) =
reg(l) — 1.

The quotient R/I has a natural grading as a K-algebra, that is, R/I = @, n(R/I)p.
The associated formal power series HP /() = ;o dimg (R/ 1)y t* is called the Hilbert-
Poincaré series of R/I. By the Hilbert—Serre Theorem, there exists a unique polynomial
h(t) € Z[t] such that h(1) # 0 and

HPg/(t) = (1h_(ti)5)d,

where d is the Krull dimension of R/I. The polynomial h(t) is called the h-polynomial of
R/I. Furthermore, if R/I is Cohen-Macaulay, then degh(t) = reg(R/I).

We now introduce the notion of non-attacking rooks on a collection of cells, together with
the associated rook polynomial. We emphasize that our definition differs from the classical
one in standard rook theory, where two rooks are considered non-attacking precisely when
they do not lie in the same row or column.

5.1 Rook polynomial.

Let P be a collection of cells. Two rooks R; and Ry are in attacking position or attacking
rooks in P if there exist two cells A1 and As of P in horizontal or vertical position such
that Ry and Ry are placed in A; and Aj, respectively, and [A1, As] is contained in P. In
contrast, two rooks are in non-attacking position or non-attacking rooks in P if they are
not in an attacking position. For instance see Figure 13.

A j-rook configuration in P is a set of j rooks arranged in non-attacking positions within
P, where j > 0; for convention, the O-rook configuration is (). Figure 14 shows a 6-rook
configuration. We say that a j-rook configuration in P is mazimal if there does not exist
any k-rook configuration in P, with k > j, that properly contains it.

The rook number r(P) is the maximum number of rooks that can be placed in P in non-
attacking positions. We denote by R(P, k) the set of all k-rook configurations in P and
set 7, = |R(P,k)|, for all & € {0,...,r(P)} (with the convention o = 1). The rook
polynomial of P is the polynomial in Z~[t] defined as

r(P)
rp(t) = Z Tktk.
k=0
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(a) Attacking (b) Non-attacking (¢) Non-attacking

Figure 13: Positions of two rooks in a polyomino.

=
g ¢
g =t
=t

Figure 14: An example of a 6-rook configuration in P.

For instance, the polyomino in Figure 15 has rp(t) = 1+ 11t + 31¢% + 24¢3 and r(P) = 3.

H|
HE =N
b=

Figure 15: Polyomino

In Combinatorial Commutative Algebra, the significance of the rook number and the rook
polynomial of a collection of cells P arises from their connection with the Castelnuovo—
Mumford regularity and the h-polynomial of K[P], respectively. This connection was
first established by Ene et al. in [15], where they studied algebraic invariants of L-convex
polyominoes.
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L-convex polyominoes.

A convex polyomino P is called k-conver if any two cells in P can be connected by a
path of cells contained in P with at most k changes of direction. A notable case occurs
when k = 1, yielding the class of L-convex polyominoes. Figures 16a and 16b display,
respectively, an L-convex polyomino and one that is not L-convex but 2-convex.

bdoolbosds

(a) (b)

Figure 16: An L-convex polyomino on the left and a 2-convex one on the right

It is observed in [15] that an L-convex polyomino, after a suitable permutation of its rows
and columns, becomes a Ferrers diagram (see Figure 2(A)). By Section 2, the coordinate
ring K [P] of such a polyomino is isomorphic to the edge ring of a weakly chordal bipartite
graph; in the Ferrers case, this graph is a Ferrers graph. The Castelnuovo-Mumford
regularity of edge rings of Ferrers graphs is computed in [12, Theorem 5.7]. This leads to
the following result.

Theorem 5.1. [15, Theorem 3.3] Let P be an L-convex polyomino. Then the Castelnuovo—
Mumford regularity of K[P| coincides with the rook number of P.

In addition, the authors also discuss the Gorenstein property:

Theorem 5.2. [15, Theorem 4.3] Let P be an L-convex polyomino, and let Py, P1,. .., P
be the derived sequence of L-convexr polyominoes of P. Then the following conditions are
equivalent:

1. K[P] is Gorenstein.

2. For 0 < k <t, the bounding box of Py is a square.

Here, the fact that Py,...,P; form a derived sequence means that P;. is obtained from
Pr—1 by removing a suitable maximal rectangle of P;_; and gluing the two remaining
parts together so as to obtain the L-convex polyomino Py (see page 12 in [15]). This
result generalizes the characterization of Gorenstein stack polyominoes established in [1,
Corollary 28] and [38, Corollary 4.12], formulated in terms of the shape of the polyomino.
However, in [1, Theorem 21], all convex polyominoes whose coordinate ring is Gorenstein
are completely classified in terms of the associated graph introduced in Section 2.
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Simple thin polyominoes

The relationship between rook theory and the Hilbert—Poincaré series is further developed
in the work of Rinaldo and Romeo [41]. For simple thin polyominoes, they obtain an
explicit combinatorial description for the h-polynomial of K[P]: it is given by the rook
polynomial of P. This provides a second broad family of polyominoes for which algebraic
invariants can be read directly from rook configurations.

Theorem 5.3. Let P be a simple thin polyomino. Then the h-polynomial and the regularity
of K[P] coincide with the rook polynomial and the rook number of P, [41, Theorem 3.13,
Corollary 3.14].

The proof relies on the standard decomposition of Hilbert—Poincaré series of a homoge-
neous ideal I of a graded ring R via the the short exact sequence

0— R/(I: f) -5 RIT— R/(I, f) — 0,
where f € R is a homogeneous element of degree d, which yields

HPg,(t) = HPR/(1, ) (t) + t HP g/ (1.5)(2).

Applied to a simple thin polyomino P, this produces the recursive formula

1
HP o) (1) = —— (HPKm (t) +

t
1—1¢ 1 HPK['P”] (t)> )

(1=1)=

where P’ is obtained by deleting the leaf cells of P, and P” is formed by removing the
maximal interval containing the leaf and gluing the remaining two pieces (see [41, Defini-
tions 3.3 and 3.4]). Induction on this expression shows that

hip(t) = rp(t),

without the need to compute the rook polynomial or the h-polynomial explicitly. Since
K[P] is Cohen—Macaulay, this also implies

reg K[P] = r(P).

These observations motivate the following conjecture.

Conjecture 5.4 (Conjecture 4.5, Question 4.6). [41] Let P be a polyomino.

o P is thin if and only if rp(t) = hip(t).
o Moreover, is reg K[P] = r(P)?

They also investigate the Gorenstein property. This property is strongly connected to
the h-polynomial thanks to a classical result of Stanley [44]: indeed, a K-algebra that is
a domain is Gorenstein if and only if its h-polynomial is palindromic. This condition is
then translated into a structural property of the polyomino, known as the S-property (see
Definition 4.1 therein).
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Theorem 5.5. [}1, Theorem 4.2] Let P be a simple thin polyomino. Then KI[P] is
Gorenstein if and only if P has the S-property.

Building on this characterization, Kummini and Veer prove in [30] that simple thin poly-
ominoes with the S-property satisfy the Charney-Davis conjecture. In particular,

(71) Ldeg(hK[P] (t))/QJ hK[P](i]‘) > 0.

The strategy developed by Rinaldo and Romeo for simple thin polyominoes extends be-
yond the simple case. In [8], Cisto, Navarra, and Utano proved that a similar Hilbert—
Poincaré decomposition can be carried out for prime closed path polyominoes. The case
of non-prime closed paths was then completed in [11], where the approach relies on com-
bining suitable exact sequences with Grobner basis descriptions of various intermediate
subpolyominoes.

Theorem 5.6. [8, Theorem 5.5/, [11, Theorem 4.18(2)], [33, Theorem 13] Let P be a
closed path polyomino. Then the h-polynomial of K[P] coincides with the rook polynomial
rp(t), and reg K[P] = r(P).

A different proof, applicable also to weakly closed paths, is given in [33], and the same
technique also works for grid polyominoes [13].

The Gorenstein property is likewise completely characterized:

Theorem 5.7. [8, Theorem 5.7], [11, Theorem 4.18(3)], [33, Theorem 13] Let P be a
closed path polyomino. Then K[P] is Gorenstein if and only if all maximal blocks of P
have rank 3.

More recently, Kummini and Veer [29] proved a partial converse to the Rinaldo-Romeo
conjecture for the class of convex polyominoes whose vertex set is a sublattice of N?:

Theorem 5.8. [29, Theorem 1] Let P be a convex polyomino whose vertex set is a
sublattice of N*. If rp(t) = hyp)(t), then P must be thin.

The proof exploits the distributive lattice structure of such polyominoes: the Hilbert—
Poincaré series can be expressed in terms of maximal chains with k-descents, following the
framework of Bjorner—Garsia—Stanley [2]. When P contains a square tetromino, two dif-
ferent 2-rook configurations need not correspond to distinct maximal chains. For instance,
if we consider the square tetromino S, then

rs(t) =1+4t+2t*>  while  hyg(t) =1+ 4t + .

In particular, once the 1-rook configurations and the 2-rook configuration from the left
in Figure 17 are associated with maximal chains, the configuration on the right remains
unassigned and cannot be matched with any maximal chain.

This observation suggests how to overcome the issue: the two 2-rook configurations should
be regarded as equivalent, since one can be obtained from the other by moving a rook from
a diagonal to an anti-diagonal position, or vice versa.
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Figure 17: Rook-configurations in a square tetromino.
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Figure 18: Four arrangements of 3 non-attacking rooks, equivalent under ~

This motivates the introduction of an equivalence relation that captures this phenomenon,
indicating that in the non-thin case the appropriate combinatorial object is not the rook
polynomial itself, but a refinement of it, namely the switching rook polynomial. This
refined polynomial is designed precisely to account for the ambiguity in rook configurations
described above and will be introduced in the next subsection.

5.2 Switching rook polynomial

Observe that the collection U;(j)) R;(P) forms a simplicial complex, known as the chess-
board complex of P. Two non-attacking rooks in P are said to be in switching position (or
are switching rooks) if they occupy cells that are diagonally (or anti-diagonally) opposite
within an inner interval I of P, denoted P;. In this situation, we say that the rooks
are in a diagonal (or, respectively, anti-diagonal) position. Fix j € {0,...,r(P)}, and
let F' € Rj(P). Consider two switching rooks Ry and Ry in F', positioned diagonally (or
anti-diagonally) in Py for some inner interval I. Let R} and R be the rooks occupying the
anti-diagonal (or diagonal, respectively) cells of P;. Then the set (F\{R1, R2})U{R}, R}}
also lies in R;j(P). This operation of replacing R; and Ry with R} and R} is called a
switch of R1 and Ra.

This induces an equivalence relation ~ on R;(P): we write F} ~ Fy if F5 can be obtained
from F} by a sequence of switches. In this case, we say that F} and Fy are equivalent with
respect to ~ (or equal up to switches). The following figure shows four 3-rook configurations
that are equivalent under ~.

Let R;(P) = R;(P)/ ~ denote the set of equivalence classes. We set 7;(P) = |R,;(P)| for
j €{0,...,7(P)}, with the convention that 7o(P) = 1. The switching rook polynomial of
P is defined as the polynomial in Z~q[t]

By using different algebraic—combinatorial methods, several classes of non-thin polyomi-
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noes P with at most one hole have been studied, and it has been shown that the h-
polynomial of K[P] agrees with the switching rook polynomial of P, while the regularity
of K[P] equals the rook number of P.

Parallelogram polyominoes and planar distributive lattices

In [40], Qureshi, Rinaldo, and Romeo studied the Hilbert—Poincaré series of parallelogram
polyominoes, showing that

Theorem 5.9. [0, Theorem 3.5, Corollary 3.13] Let P be a parallelogram polyomino.
Then the h-polynomial and the regularity of K[P] coincide with the switching rook poly-
nomial and the rook number of P.

A parallelogram polyomino can be viewed as a planar distributive lattice and, as mentioned
earlier, its Hilbert—Poincaré series is known and described in terms of maximal chains with
k-descents (see [2]). As a substantial refinement of [29], a bijective correspondence between
maximal chains with k-descents and arrangements of k£ non-attacking rooks, up to switches,
is established in Proposition 3.11 and Lemma 3.12, thereby proving that 7p(t) = hgp|(?)
(Theorem 3.5). Moreover, by computational methods, the latter result is proved for all
simple polyominoes of rank at most 11.

Theorem 5.10. [40, Theorem 3.4] Let P be a simple polyomino with rank at most 11.
Then the h-polynomial and the regularity of K[P] coincide with the switching rook poly-
nomial and the rook number of P.

This leads to a first conjecture, namely that for any simple polyomino P, one should have
7p(t) = hgp)(t). In [36], this correspondence is reasonably extended to all collections of
cells. We also remark that Theorem 5.9 allows one to recover the result of [29].

Remark 5.11. Let P be a convex polyomino whose vertex set is a sublattice of N? such
that 7p(t) = hp)(t). Then, by [40, Theorem 3.5], we have 7p(t) = rp(t), which implies
that P must be thin.

Hibi [24] characterized Gorenstein simple planar distributive lattices by proving that they
are Gorenstein if and only if all maximal chains have the same length. The corresponding
characterization for parallelogram polyominoes is reformulated in terms of the so-called S-
property (see how [40, Definition 4.1] generalizes [41, Definition 4.1]) in [40, Theorem 4.10],
where a description in terms of Motzkin paths is also provided (see [40, Corollary 4.13]).

Shellable flag simplicial complexes of polyominoes.

In [27], frame polyominoes are introduced by Jahangir and Navarra. A frame polyomino
is a non-simple polyomino obtained by removing the cells of a parallelogram polyomino
from a rectangle (see Figure 19).

They study the associated Hilbert—Poincaré series by means of a new method based on a
well-known result of McMullen—Walkup concerning the h-vector of a shellable simplicial
complex, which we recall below.
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Figure 19: Frame polyomino.

Theorem 5.12. [3, Corollary 5.1.14] Let A be a d-dimensional shellable simplicial com-
plex with shelling Fy, Fs,...,Fy. For j = 1,...,m, let r; be the number of facets of
(Fj) \ (F1,...,Fj—1), and set ro = 0. Then

hi=Wjlrj=1}  fori=0,...,d

In particular, up to reordering, the numbers r; do not depend on the chosen shelling.

The paper analyses the flag simplicial complex arising from the initial ideal of Ip with
respect to the reverse lexicographic order induced by the natural total order on the vertices.
To achieve this, a new combinatorial notion, namely the step of a face (see Definition 3.3
therein), is introduced, and a complete description of the facets with k-steps is provided
in terms of the vertices of the frame polyomino (see Discussion 3.9 therein). A crucial
result is then established to prove the shellability of Ap.

Theorem 5.13. [27, Theorem 3.12] Let P be a frame polyomino and let A(P) be the

simplicial complex attached to P. Suppose that Fp is lexicographically ordered in descend-
ing order and denote by <jex such an order. Consider a facet F' # Fy of A(P) and set
S(F)={GeFp:F <iex G} and

Kp ={F\{v} :v is the lower-right corner of a step of F' }.

Then:

1. S(F)NF = Kp, and in particular, Fp forms a shelling order of A(P);

2. the i-th coefficient of the h-polynomial of K[P| is the number of facets of A(P)
having © steps.

Another important result is presented in [27, Theorem 4.6], providing a bijection between
facets with k-steps and arrangements of k non-attacking rooks, up to switches. This leads
to the main theorem of the paper:

Theorem 5.14. [}0, Theorem 4.7, Corollary 4.8] Let P be a frame polyomino. Then the
h-polynomial and the regularity of K[P] coincide with the switching rook polynomial and
the rook number of P.
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The conjecture [40, Conjecture 3.2] was formulated originally for simple polyominoes.
Since a frame polyomino is non-simple, it was natural to expect that the conjecture could
be extended to arbitrary polyominoes, as proposed in [27, Conjecture 4.9].

The approach employed by Jahangir and Navarra in [27] is further extended in [14] to
obtain the corresponding results for grid polyominoes, and in [33] for closed path and
weakly closed path polyominoes (where a suitable monomial order is chosen to guarantee
the shellability of Ap).

Convex collections of cells with quadratic Grobner basis.

In [36], Navarra, Qureshi, and Rinaldo provide an algorithm to compute the switching rook
polynomial of a collection of cells (see [34]) and, by using it, establishes the following:

Theorem 5.15. Let P be a collection of cells. Then hyp)(t) coincides with the switching
rook polynomial of P, and reg(K[P]) equals the rook number of P in the following cases:

o when P is a collection of cells of rank at most 10;

e when P is a polyomino of rank at most 12.

Motivated by this evidence, they conjecture that the correspondence holds in general:

Conjecture 5.16. Let P be a collection of cells. Then the switching rook polynomial of
P coincides with the h-polynomial of K[P], and the rook number of P equals the regularity
of K[P].

The second part of the paper proves the above conjecture for convex collections of cells
whose inner 2-minor ideal has a quadratic Grobner basis with respect to <iev and <jey,
where <oy and <o denote the reverse lexicographic and lexicographic orders on Sp
induced by the natural total order on its variables: for z,,x;, € Sp with a = (i,j) and
b= (k,0), weset z, >uxpif i >k, orif i =k and j > /.

Domino-stability, palindromicity and Gorensteiness.

In [37], the palindromicity of the switching rook polynomial is studied. The central notion
introduced there is the domino stability of a collection of cells, and a complete character-
ization is given of all collections of cells whose switching rook polynomial is palindromic:

Theorem 5.17. [37, Theorem 5.1] Let P be a collection of cells and let 7p(t) denote the
switching rook polynomial of P. Then Tp(t) is palindromic if and only if P is domino-
stable.

Consequently, by Stanley’s classical result [44], domino stability provides a characteriza-
tion of the Gorenstein property of K[P] when K[P] is a domain, and a necessary condition
when it is not. Computational evidence obtained with [34] and [35] confirms the following:
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Proposition 5.18. [37, Proposition 5.5] Let P be a domino-stable collection of cells with
rank less than or equal to 10, or a domino-stable polyomino with rank less than or equal
to 12. Then K[P] is Gorenstein.

This leads to the following conjecture:

Conjecture 5.19. [37, Conjecture 5.6/ Let P be a collection of cells. Then K[P] is
Gorenstein if and only if P is domino-stable.

6 Canonical Module, Pseudo-Gorensteiness and Levelness

Let R be a standard graded Cohen—Macaulay K-algebra with canonical module wg. Then
R is Gorenstein if and only if its canonical module is cyclic, and hence generated in a
single degree. This condition on wr may be weakened in different ways, in particular:

1. if one only requires that all generators of wgr have the same degree, then R is called
a level ring;

2. if one requires that wr has a unique generator of minimal degree, then R is called a
pseudo-Gorenstein ring.

Pseudo-Gorenstein rings can be studied through their Hilbert—Poincaré series, since this
property occurs precisely when the leading coefficient of the h-polynomial is equal to 1.

Pseudo-Gorenstein and level paths.

In [42], Rinaldo, Romeo and Sarkar initiated the study of the pseudo-Gorenstein and
level properties for path polyominoes. Since for simple thin polyominoes the A-polynomial
coincides with the rook polynomial, when P is a simple path this amounts to characterizing
those having a unique r(P)-rook configuration.

They call a stair a ladder S of at least two steps such that all maximal rectangles contained
in S, except the first and the last one, have the rank equal to 2. An odd stair is a stair
containing an odd number of maximal rectangles.

Theorem 6.1. Let P be a path polyomino with {I, Is,...,Is} the sequence of maximal
rectangles of P, and let l, = |Ix| for all 1 < k < s. Then K[P] is pseudo-Gorenstein if
and only if either P is a cell or the following conditions hold:

1. h=ls=2andlp <3 forall2<k<s—1;
2. P does not contain odd stairs.

[42, Theorem 4].
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To characterize level simple paths, the authors study the socle of the ring K[P] modulo
suitable linear forms, together with the structure of rook configurations in P. By defining
a bad stair as a stair whose number of maximal rectangles is 4, 6, or greater than or equal
to 8, they proved the following result.

Theorem 6.2. Let P be a path polyomino. Then K[P] is level if and only if P does not
contain a bad stair, [42, Theorem 10].

Canonical module of circle closed polyominoes.

In [14], Dinu and Navarra provide a combinatorial description of the canonical module of
the coordinate ring of circle closed path polyominoes. A circle closed path is a closed path
having exactly four maximal rectangles (see Figure 20, for instance).

(1,6) (2,6) (5,6) (6,6) (7,6)
5) [(275) /75) [(8AH1(6. (7, 5)

(1, 4\(2, 4) (6 (7,4)

(1.3(2,3)

(1,2,1(2,2) (5,2) [(8,2) [(7,2)

(1K01(2, 1) 1) [ IN(7, 1)
A A As

Figure 20: A circle closed path.

As a preliminary step, they establish the following result.

Theorem 6.3. Let P be a closed path polyomino. Then Ip is of Kénig type, [14, Theorem
4.8].

Based on this, one can define two ideals: a binomial ideal J(P), arising from the Kénig-
type property, and a monomial ideal K (P), constructed from suitable vertices of P. In
Figure 20, one can observe the following: (1) the vertices involved in the monomial gen-
erators of K (P)—in particular, the variables appearing in a generator correspond to the
blue vertices and, for each pair of vertices of the same color, the generator contains exactly
one of them, subject to the restriction that no two chosen vertices may lie in a diagonal
position; (2) the leading terms, represented by the “diagonal lines”, of the binomials of
Ip, which are selected as generators of J(P).

Using a classical result from linkage theory, they prove the following.

Theorem 6.4. Let P be a circle closed path. Denote by wip) the canonical module of
K[P]. Then
~ (J(P)+ K(P))
ST

where J(P) and K(P) are the ideals defined in [14, Definition 5.2].
Moreover, K[P] is a level ring, [14, Theorem 5.4, Corollary 5.17].
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Fuss—Catalan numbers as the Cohen—Macaulay type of certain Ferrers
diagrams

For p > 1, let uq,...,u, and 71,...,7, be integers. We denote by

F=7P P
TLo T2 e T
the Ferrers diagram whose first r; columns consist of u; cells, the next ro columns consist

of (u1 + ug) cells, and, in general, the next r; columns consist of Zle u; cells, up to the
final 7, columns of Y Y, u; cells.

211
211

2 2 2

> on the left and P <1 11

For instance, Figure 21 displays P ( > on the right.

Figure 21: Ferrers diagrams.

Stefan provided an explicit description of the Cohen—Macaulay type for a particular class
of Ferrers diagrams, expressed in terms of the Fuss—Catalan numbers

1 np
C = — .
() (n—l)p+1<p>
Theorem 6.5. Let

Up U9 U U1 U9 u
P1=P P and Py =P P,
T 9 ’l“p S1 S9 v Sp
where uy = -+ =wu, =n, 11 = -+ =1, =1t, and s = --- = s, = n —1t. Then the

two non-isomorphic coordinate rings K[P1] and K[P2] have the same Cohen—Macaulay
type. Moreover, for t =1 this type coincides with the Fuss—Catalan number Cpi1(n), [45,
Theorem 10, Corollary 11].

The proof relies on the classical theorem of Danilov—Stanley, which describes the canonical
module wg of a semigroup ring R = K[A], where A is a collection of lattice points in Z",
in terms of the polyhedral cone generated by A.

7 A package for Macaulay2: PolyominoIdeals

In [10], Cisto, Jahangir, and Navarra developed a package for the computer algebra system
Macaulay2 [17] designed to work with collections of cells and their associated binomial
ideals.
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Since a cell in the lattice Z? is uniquely determined by its lower-left corner, it is natural to
encode a collection of cells as a list of such corners. For instance, a square tetromino may be
encoded as Q = {{1, 1}, {1, 2}, {2, 1}, {2, 2}}. The command cellCollection
Q then allows to create an object of type Collection0fCells, that can be used in the
provided functions.

Below we provide the complete list of functions implemented in the package, organized
according to their structural-combinatorial, rook-theoretic, and algebraic features.

7.1 Structural-combinatorial functions

cellCollection Create a collection of cells.
innerInterval Check if an interval is an inner interval of a collection of cells.

cellGraph Provide the graph G associated with a collection of cells {C1,...,C,}, where
V(G) = [n] and E(G) = {{i,j} : C; shares an edge with C}}.

collectionIsConnected Check whether a collection of cells is connected.
connectedComponentsCells Provide the connected components of a collection of cells.
isRowConvex Check the row convexity of a collection of cells.

isColumnConvex Check the column convexity of a collection of cells.

isConvex Check the convexity of a collection of cells.

collectionIsSimple Check if a collection of cells is simple.

rankCollection Give the rank of a collection of cells.
randomCollectionWithFixedRank Provide a random collection of cells with fixed rank.
randomCollectionOfCells Provide a random collection of cells up to a given size.
randomPolyominoWithFixedRank Provide a random polyomino with fixed rank.

randomPolyomino Provide a random polyomino of random size up to a prescribed bound.

7.2 Rook theory functions

isNonAttackingRooks Check whether a rook configuration is non-attacking.

allNonAttackingRookConfigurations Provide the list of all non-attacking rook config-
urations in a collection of cells.

rookPolynomial Compute the rook polynomial of a collection of cells.

rookNumber Compute the rook number of a collection of cells.


https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_cell__Collection.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_inner__Interval.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_cell__Graph.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_collection__Is__Connected.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_connected__Components__Cells.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_is__Row__Convex.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_is__Column__Convex.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_is__Convex.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_collection__Is__Simple.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_rank__Collection.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_random__Collection__With__Fixed__Rank.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_random__Collection__Of__Cells.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_random__Polyomino__With__Fixed__Rank.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_random__Polyomino.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_is__Non__Attacking__Rooks.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_all__Non__Attacking__Rook__Configurations.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_rook__Polynomial.html
https://www.macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/PolyominoIdeals/html/_rook__Number.html
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equivalenceClassesSwitchingRook Provide the list of equivalence classes of non-attacking
rook configurations under switching.

switchingRookPolynomial Compute the switching rook polynomial of a collection of
cells.

standardRookNumber Compute the standard rook number of a collection of cells.

standardNonAttackingRookConfigurations Give the list of the standard non-attacking
rook configurations.

standardRookPolynomial Compute the standard rook polynomial of a collection of cells.

7.3 Algebraic functions

polyoIdeal Give the ideal of inner 2-minors of a collection of cells.
polyoToric Compute the toric ideal of a collection of cells.

polyoLattice Compute the lattice ideal associated with a collection of cells.
adjacent2MinorIdeal Provide the ideal generated by adjacent 2-minors.
isPalindromic Check whether a polynomial is palindromic.

polyoMatrix Give the matrix associated with a collection of cells.

polyoMatrixReduced Compute the reduced form of polyoMatrix, in according to [25].
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