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ABSTRACT
This survey aims to present and promote the study of the strong persistence property in clutters from a
quantitative and structural perspective. We denote by Cn the set of all clutters on [n], by Sn the subset of
clutters satisfying the SPP, and by Nn = Cn \Sn those that fail it. Our analysis focuses on understanding
how these families behave and interact across consecutive levels.
Beyond results, this paper seeks to draw attention to open problems and conjectures related to the structure
and distribution of persistent clutters, proposing a new research direction based on the study of families
Sn and Nn across levels of n.
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1 Introduction

Let R = K[x1, . . . , xn] be a polynomial ring. A monomial ideal I is squarefree if G(I)
consists of squarefree monomials. A clutter is a pair C = (V,E) where V is a finite set and
E is a set of subsets of V such that if a ⊆ b with a, b ∈ E, then a = b. The sets V = V (C)
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and E = E(C) are called vertex set and edge set, respectively. If f = {xi1 , . . . , xir} ∈ E(C),
then denote by f̃ the squarefree monomial xi1 · · ·xir . The edge ideal of the clutter C,
denoted by I(C), is the ideal generated by {f̃ | f ∈ E(C)}. This assignment defines a
natural bijection between squarefree monomial ideals of K[x1, . . . , xn] and clutters whose
vertex set is X.
We say that an ideal I of a commutative ring R has the strong persistence property if

Ik+1 : I = Ik for every k ≥ 1.

In the case of monomial ideals, this property can be studied directly through the behav-
ior of their monomial generators. Indeed, if G(I) = {m1, . . . ,mr} denotes the minimal
monomial generating set of I, it is enough to verify the condition for the monomials in
R := k[x1, · · · , xn] the polynomial ring. More precisely, I satisfies the strong persistence
property provided that for any monomial m ∈ Mon(R) (set of all monomials of R) satis-
fying

mmi = ℓim
ai1
1 · · ·mair

r , with
r∑

j=1

aij = k + 1, i ∈ [r],

there exists a monomial ℓ such that

m = ℓmbi1
1 · · ·mbir

r , where
r∑

j=1

bij = k.

Hence, strong persistence property can be verified through these multiplicative relations
among the minimal monomial generators of I.
This formulation is particularly useful when studying edge ideals of clutters. Since every
generator of I(C) corresponds to an edge of the clutter C, the above multiplicative relations
among monomials translate directly into combinatorial conditions on the intersections of
edges. Consequently, the strong persistence property for I(C) can be understood in purely
combinatorial terms, allowing us to analyze it through the structure of C itself rather
than through the algebraic behavior of its associated primes. This viewpoint establishes
a bridge between the algebraic properties of monomial ideals and combinatorial configu-
rations within the clutter, which is one of the main motivations of this study.
If C is a clutter over X = {x1, . . . , xn}, we say that C is strongly persistent when its
edge ideal I(C) satisfies the strong persistence property. Empirical evidence suggests that
only a very small proportion of clutter fails to satisfy SPP (Strong persistence Property).
Although the absolute number of non-persistent clutters increases with n, their proportion
relative to the total number of clutters remains extremely low.
We denote by Cn the set of all clutters on [n], Sn the set of clutters on [n] satisfying SPP
and Nn = Cn \ Sn. The comparative study of these quantities across consecutive levels
provides valuable insight into the distribution of persistent clutters and their asymptotic
behavior. In particular, it is natural to ask whether the limits

lim
n→∞

|Nn|
|Sn|

, lim
n→∞

|Nn|
|Cn|
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exist, moreover, if these limits take the value 0. A vanishing limit would suggest that
non-persistence becomes increasingly rare as the number of vertices grows, indicating that
persistence might be an asymptotically dominant or stable property among large clutters.

The main goal of this work is to develop a combinatorial and algebraic framework to
estimate, compare, and bound the values of |Sn|, |Nn|, and |Cn|, while understanding
how the strong persistence property behaves under structural operations on clutters. By
analyzing both ascending operations (such as cones, edge cones, and corona products) and
descending ones (such as deletions and contractions), we aim to obtain recursive relations
or inequalities connecting these quantities across levels n− 1, n, and n+ 1.
This approach not only clarifies the mechanisms that preserve persistence but also provides
a systematic way to approximate the relative density of strongly persistent clutters. Ulti-
mately, our objective is to describe the asymptotic distribution of clutters with SPP and
to establish quantitative bounds that may lead to a deeper understanding of persistence
as a structural invariant in combinatorial commutative algebra.

Through a combination of constructive lemmas and propositions involving cones, suspen-
sions, and contractions, it is shown that all clutters on five vertices are strongly persis-
tent. This conclusion supports the conjecture that strong persistence is an asymptotically
dominant and structurally stable phenomenon in the universe of clutters, revealing deep
connections between combinatorial configurations and algebraic invariants in monomial
ideal theory.
In [21] and [2], we developed algebraic and combinatorial techniques to analyze how |Nn|
changes under vertex addition and deletion. More precisely, we would like to find adequate
functions k(n),K(n) > 0 such that

k(n) |Cn−1| ≤ |Nn| ≤ K(n) |Cn+1| for every n.

And
k(n) |Sn−1| ≤ |Nn| ≤ K(n) |Sn+1| for every n.

These inequalities allow us to control the growth of Nn between consecutive levels and to
relate the behavior of non-persistent clutters at different scales.

2 Set of monomials and monomial Ideals

Definition 2.1. Let M be a set of monomials. A monomial m ∈ M is said to be minimal
if for every m′ ∈ M such that m′ | m, it follows that m′ = m. Similarly, a monomial
m ∈ M is maximal if for every m′ ∈ M such that m | m′, we have m′ = m. We denote by
Mmin and Mmax the sets of minimal and maximal elements of M, respectively.

Given A ⊆ [n] and a ∈ Zn
≥0, we define the restriction

a|A := (ai)i∈A.
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For a = (a1, . . . , an) ∈ Zn
≥0, we write

xa := xa11 · · ·xann ∈ K[x1, . . . , xn].

Given a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Zn
≥0, we note that xa | xb if and only if a ≤ b,

that is, ai ≤ bi for all i ∈ [n]. Additionally, we denote a < b if and only if a ≤ b and a 6= b

lemma 2.2. Let M be an infinite set of monomials in R = K[x1, . . . , xn]. Then there
exists a sequence {mi}i∈N ⊆ M such that mi | mi+1 and ai 6= ai+1 for all i.

Proof. We consider
M = {a ∈ Zn

≥0 | xa ∈ M}.

Its sufficient to show that there exists a sequence ai ∈ M, i ∈ N such that ai < ai+1

Given ∅ ⊊ A ⊆ [n] and b ∈ ZA
≥0, we define

M b
A := {a ∈ M | a|A = b} and N b

A := {a|Ac | a ∈ M b
A}.

Where Ac = [n]\A. Clearly, |N b
A| = |M b

A| since a 7−→ a|Ac define a bijection.

If N b
A is infinite for some A ⊆ [n] with 1 ≤ |A| ≤ n − 1 and b ∈ ZA

≥0. By the induction
hypothesis, there exists a sequence ai ∈ M, i ∈ N such that a′i := (ai)|Ac holds

a′i < a′i+1, i ∈ N

Since (ai)|A = b for each i ∈ N, we obtain ai < ai+1.

Now, suppose N b
A is finite for every A ⊆ [n] with 1 ≤ |A| ≤ n − 1 and every b ∈ ZA

≥0.
Choose

a1 = (a11, . . . , a1n)

to be a minimal element of M. For each j ∈ [n] and 0 ≤ b ≤ a1j we have that N
(b)
{j} is

finite and there are ∑
j∈[n]

(a1j + 1),

sets of kind N
(b)
{i}, j ∈ [n], 0 ≤ b ≤ a1j . Hence both∪

j∈[n], 0≤b≤a1j

N
(b)
{j} and

∪
j∈[n], 0≤b≤a1ij

M
(b)
{j}

are finite.
Define

M1 := M \

 ∪
j∈[n], 0≤b≤a1j

M
(b)
{j}

 .

We obtain a1 /∈ M1 and M1 is infinite. More over, if a ∈ M1. Thus a1 < a. Hence we
choose a2 ∈ M1. By continuing this process recursively, we obtain a strictly increasing
sequence

a1 < a2 < a3 < · · · .
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Finally,
xa1 | xa2 | xa3 | · · ·

is a sequence in m with xai 6= xai+1 for every i.

This proposition immediately yields a generalization of Dickson’s Lemma. Indeed, by
applying the construction above to any infinite set of monomials in R = K[x1, . . . , xn], we
can extract an infinite chain under divisibility, showing that every set of monomials admits
only finitely many minimal elements. Hence, the classical Dickson’s Lemma follows as a
direct consequence of the finiteness of Mmin established above.

Corollary 2.3 (Dickson’s Lemma). Let M be a set of monomials. Then the set Mmin of
minimal elements is finite.

Recall that a monomial ideal I ⊂ R = K[x1, . . . , xn] has dimension 0 if and only if
it is primary to the irrelevant maximal ideal m = (x1, . . . , xn). Indeed, dim(R/I) = 0
means that every variable xi is nilpotent modulo I, hence some power xkii ∈ I for each
i, implying that

√
I = m. Conversely, if

√
I = m, then all variables become nilpotent in

R/I, so dim(R/I) = 0. Thus, zero-dimensional monomial ideals and ideals primary to the
irrelevant maximal ideal are equivalent notions.
The following results extend the classical statement of Dickson’s Lemma from the set-
ting of monomials to that of monomial ideals. In the monomial case, Dickson’s Lemma
asserts that every set of monomials in a polynomial ring contains only finitely many min-
imal elements under divisibility. Theorems 2.4 and Corollary 2.6 generalize this finiteness
property to collections of monomial ideals, showing that any infinite family of such ideals
must contain two members comparable under inclusion. In this sense, the lattice of mono-
mial ideals inherits the same well-quasi-order structure that the monomials themselves
possess under divisibility.

lemma 2.4. [14, Lemma 5.1] Let I be an infinite collection of zero-dimensional monomial
ideals in a polynomial ring R = K[x1, . . . , xn]. Then there exist two ideals I, J ∈ I such
that I ⊆ J .

Proof. Assume by contradiction, that I consist of infinitely many zero-dimensional mono-
mial ideals which are pairwise incomparable under inclusion.
Select an ideal I1 ∈ I. Since for each I ∈ I \ {I1} it holds that I ⊈ I1, every such I
must include at least one of the finitely many standard monomials of I1. Consequently,
there exists an infinite subcollection of ideals in I that share the same subset of standard
monomials of I1. Denote this subcollection by I1 and let J1 be the intersection of all ideals
in I1.
We proceed inductively. Suppose that Ik and Jk have already been defined. Choose an
ideal Ik+1 ∈ Ik. As in the previous step, one can find an infinite subcollection Ik+1 ⊆
Ik consisting of ideals having the same nontrivial intersection with the set of standard
monomials of Ik+1. Define Jk+1 as the intersection of all ideals in Ik+1.
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By construction, we have Jk+1 ⊇ Jk, since Jk+1 contains all standard monomials that are
common to the ideals in Ik+1. Repeating this procedure, we obtain an infinite strictly
increasing chain

J1 ⊊ J2 ⊊ J3 ⊊ · · ·
of monomial ideals in S, contradicting the Noetherian property of S. Hence the elements
of I are comparable. That is, there exist I, J ∈ I with I 6= J such that I ⊆ J.

Theorem 2.5. [14, Theorem 1.1] Let I be an infinite collection of monomial ideals in
a polynomial ring over an arbitrary field. Then there exist two ideals I, J ∈ I such that
I ⊆ J .

Proof. Every monomial ideal of R has only finitely many associated primes, all of which
are monomial primes of the form

Pτ = (xi | i /∈ τ), τ ⊆ [n].

Hence, among the ideals in I we may restrict to an infinite subfamily sharing the same
set of associated primes; denote this subfamily again by I.
For each I ∈ I, fix an irredundant primary decomposition

I =
∩
τ

Iτ ,

where each Iτ is a monomial ideal primary to Pτ . If for a given τ the set {Iτ : I ∈ I}
is finite, then infinitely many ideals in I have the same τ–component Iτ . Otherwise, by
applying Lemma 2.2 to the ring K[xi : i /∈ τ ], we obtain an infinite descending chain

I(1)τ ⊋ I(2)τ ⊋ I(3)τ ⊋ · · · .

Since there are only finitely many possible associated primes, we can select an infinite
sequence of ideals

I1, I2, I3, . . . ∈ I
such that for each fixed τ , the corresponding primary components satisfy

I1,τ ⊇ I2,τ ⊇ I3,τ ⊇ · · · .

Consequently, the intersections
Ik =

∩
τ

Ik,τ

form an infinite descending chain

I1 ⊋ I2 ⊋ I3 ⊋ · · · .

In particular, we have Ik+1 ⊆ Ik for some k, showing that two ideals in I are comparable
under inclusion.
This contradicts the assumption that I is an infinite antichain. Hence, any infinite collec-
tion of monomial ideals in R contain ideals I 6= J such that I ⊆ J .
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Corollary 2.6. [14, Corollary 5.2] Let I be an infinite collection of zero-dimensional
monomial ideals. Then there exists an infinite strictly descending chain

I1 ⊋ I2 ⊋ I3 ⊋ · · ·

of ideals in I.

Proof. Because the ring R is Noetherian, the collection I contains ideals that are maximal
with respect to inclusion. By Lemma 2.4, there are only finitely many such maximal
elements. Select one of them, say I1 ∈ I, which contains infinitely many other ideals from
I.
Set

I1 = { I ∈ I | I ⊊ I1 }.
Applying the same argument recursively to I1, we obtain an infinite strictly descending
sequence of ideals

I1 ⊋ I2 ⊋ I3 ⊋ · · · ,
where each Ik+1 is properly contained in Ik. This establishes the desired chain and com-
pletes the proof.

As a consequence of the previous results, we can recover a well-known corollary concerning
initial ideals. Indeed, since any infinite collection of monomial ideals must contain two
ideals that are comparable under inclusion, it follows that only finitely many distinct
initial ideals can arise when all monomial orders are considered. This classical finiteness
statement—often attributed to Galligo and Bayer–Stillman—emerges naturally from the
general framework developed above, showing that the space of initial ideals is itself finite.

Corollary 2.7. Let I be an ideal of the polynomial ring R = K[x1, . . . , xn]. Then the set

{ in≤(I) : ≤∈ Ω }

of initial ideals (as ≤ ranges over all monomial orders Ω on R) is finite.

Proof. Fix a monomial order ≤ on R. By [7, Proposition. 2.2.5], the residue classes of
the monomials not contained in in≤(I) form a k-basis of R/I; denote this set of standard
monomials by

B≤(I) := { [m] ∈ R/I | m /∈ in≤(I) }.
If ≤ and ≤′ are monomial orders with in≤(I) ⊆ in≤′(I), then every monomial that is
standard for ≤′ is also standard for ≤, hence

B≤′(I) ⊆ B≤(I).

But both B≤′(I) and B≤(I) are k-bases of R/I, so the inclusion forces equality:

B≤′(I) = B≤(I) and hence in≤′(I) = in≤(I).

Therefore distinct initial ideals are pairwise incomparable under inclusion; that is, the
family {in≤(I)}≤∈Ω is an antichain in the poset of monomial ideals. By Theorem 2.4,
every such antichain is finite, and the claim follows.
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Having established that such families are necessarily finite, the next natural step is to
determine explicit bounds for their cardinalities. We are particularly interested in finding
estimates that depend only on the number of variables (or equivalently, on the number of
vertices n in the combinatorial interpretation). In other words, once finiteness is guaran-
teed by the previous results, our goal is to quantify this finiteness by providing asymptotic
or exact bounds that reflect the combinatorial complexity of the ambient space.
Given a finite set X and E consisting of subsets of X whose elements do not have contention
relations, E is called a clutter, nonetheless originally a family that was called a Sperner
family. The Lubell–Yamamoto–Meshalkin (LYM) inequality is a cornerstone of extremal
set theory, providing a probabilistic bound on the structure of families of subsets within
the Boolean lattice. Formally, it asserts that for any family F ⊆ 2[n], the inequality∑

A∈F

1(
n
|A|

) ≤ 1

holds whenever F contains no full chain. This result generalizes Sperner’s theorem and
has become a unifying tool in the study of antichains, posets, and related combinatorial
structures. Beyond its original formulation, the LYM inequality has inspired numerous ex-
tensions to distributive lattices, weighted versions, and applications in information theory
and extremal combinatorics, making it a fundamental reference point in survey expositions
of the field.

lemma 2.8. [13, Theorem 1] Let C be a clutter. We consider sk the number of edges of
E(C) of cardinality k, for k = 1, . . . , n. Then

n∑
k=1

sk(
n
k

) ≤ 1

Proof. Given e ∈ E with |e| = k, we consider

Be := {f : [k] −→ e | f is a bijection}.

And
B′

e := {g : [n]\[k] −→ V \e | g is a bijection}.

If Ae ⊆ Sn denotes the set of all permutations σ ∈ Sn such that σ([k]) = e, then

|Ae| = |Be| |B′
e| = k!(n− k)!.

Since Be ∩Be′ = ∅ for distinct e, e′ ∈ E, we have that

A :=
∪
e∈E

Ae ⊆ Sn

is a pairwise disjoint union of subsets of Sn. Hence,
n∑

k=1

sk k!(n− k)! =
∑
e∈E

|e|!(n− |e|)! = |A| ≤ |Sn| = n!.
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Therefore,
n∑

k=1

sk k!(n− k)! ≤ n!.

Dividing by n! and using the identity
(
n
k

)
= n!

k!(n−k)! , we obtain

n∑
k=1

sk(
n
k

) =

n∑
k=1

sk
k!(n− k)!

n!
≤ 1.

Theorem 2.9. [22, Theorem 1] Let C = (V,E) be a clutter on a finite set V of cardinality
n. Then

|E| ≤
(

n

bn2 c

)
.

Proof. Since
(
n
k

)
≤

( n
⌊n2 ⌋

)
for all k = 1, . . . , n, it follows from Proposition 2.8 that

n∑
k=1

sk( n
⌊n2 ⌋

) ≤
n∑

k=1

sk(
n
k

) ≤ 1.

Hence,

|E| =
n∑

k=1

sk ≤
(

n

bn2 c

)
.

3 Squarefree monomial ideals and clutters

The following lemma provides a useful combinatorial tool for studying the strong persis-
tence property in clutters, particularly for low powers of their edge ideals. It allows one to
control divisibility relations among squarefree monomials appearing in consecutive powers,
ensuring that certain containment relations between colon ideals hold. In practice, this
technical observation simplifies the verification of strong persistence for the first symbolic
or ordinary powers of a clutter ideal and serves as a key step in proving the next two
results.

lemma 3.1. [21, Lemma 1] Let f, g be squarefree monomials in R = K[x1, . . . , xn]. If
there exists an integer k ≥ 2 and a monomial m such that fk | mg, then fk−1 | m.

Corollary 3.2. [21, Corollary 4] Let I be a squarefree monomial ideal. If the minimal
generating set G(I) has at most two elements, then I satisfies the strong persistence
property.

Theorem 3.3. [21, Theorem 6] Let I be a squarefree monomial ideal in R = K[x1, . . . , xn].
Then

(I2 : I) = I.
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These results play a fundamental role in understanding the behavior of the strong per-
sistence property. In particular, Corollary 3.2 and Theorem 3.3 provide the base cases
for analyzing the equality (Ik : I) = Ik−1 when k ≥ 3. Once this equality is verified for
k = 2 and for ideals with a small number of generators, the next challenge is to study
how the property extends to higher powers and to ideals generated by more than two
squarefree monomials. This transition marks the point where the combinatorial structure
of the clutter associated to I becomes essential.

Theorem 3.4. [21, Theorem 7] Let C = C1∪· · ·∪Cr be a clutter with connected components
C1, . . . , Cr. Then C has the strong persistence property if and only if some of its components
Ci has the strong persistence property.

Theorem 3.4 provides a structural simplification in the study of the strong persistence
property. It shows that it is enough for a single connected component of a clutter to
satisfy the property in order for the entire clutter to have it. Consequently, one may
restrict the analysis to connected clutters, since any failure or validity of the property is
determined locally by the connected components. Moreover, the theorem also implies that
the property fails if and only if each connected component fails, which is a conceptually
natural behavior in mathematics. Considering the low probability that a clutter fails to
satisfy strong persistence (as will be discussed later), the existence of such exceptional
case is particularly interesting. Identifying and classifying the minimal clutters that fail
the property, and understanding how they embed within larger nonpersistent clutters,
becomes an essential direction for further investigation.

Example 3.5. [21, Example 2] Let C be a clutter. If e1, e2 ∈ {A ⊆ V (C) | A ∩ f =
∅ for every f ∈ E(C)}, then by Theorem 3.4 and Corollary 3.2, the clutter E(C)∪{e1, e2}
satisfies the strong persistence property.

This example plays a fundamental illustrative role in our framework since it provides a
constructive way to move upward in the hierarchy of clutters, that is, from the family Cn

of all clutters on n vertices to the family Sm of strongly persistent clutters with m > n.
Indeed, by adding suitable disjoint edges to a given clutter, we can ensure the strong
persistence property holds in the resulting structure. Moreover, as will be shown later
in Proposition 4.10, every clutter with exactly three edges satisfies the strong persistence
property. Hence, this idea naturally extends the previous example: if C is a clutter and
e1, e2, e3 ⊆ V (C) such that elements of {e1, e2, e3} are incomparable and ei ∩ e = ∅ for
every e ∈ E(C)} and i ∈ [3]. Then the clutter whose edge set is E(C)∪{e1, e2, e3} satisfies
the strong persistence property.

lemma 3.6. [21, Lemma 2] Let C be a clutter. If there exists an edge e0 ∈ E(C) such that

A = { e ∩ e0 | e ∈ E(C) }

forms a chain under inclusion, then the edge ideal I(C) satisfies the strong persistence
property.

While Lemma 3.6 may appear to be a rather simple and highly particular case. However,
when one considers its contrapositive form, the statement reveals a deeper connection
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with several well-studied algebraic properties, such as the König property and the Cohen–
Macaulay condition. This perspective highlights an underlying structural link between
the strong persistence property and broader concepts in the theory of Gorenstein rings,
thereby opening a pathway between persistence phenomena in clutters and classical results
in combinatorial commutative algebra.

Corollary 3.7. [21, Corollary 6] If C is a clutter that does not satisfy the strong persistence
property, then for every e ∈ E(C) there exist edges e1, e2 ∈ E(C) such that

e ∩ e1 ⊈ e ∩ e2 and e ∩ e2 ⊈ e ∩ e1.

Corollary 3.7 can be viewed as the negative counterpart of Lemma 3.6. While Lemma
3.6 identifies a structural condition that guarantees the strong persistence property, this
corollary characterizes, in combinatorial terms, the configurations that force its failure.
The result provides a natural bridge toward the study of algebraic properties such as the
Cohen–Macaulay and König conditions. Before establishing this connection, we briefly
recall several key concepts that will allow us to interpret the strong persistence property
in a more algebraic and homological framework.

Definition 3.8. Let C be a clutter. A subset A ⊆ V (C) is called a vertex cover if A∩e 6= ∅
for every e ∈ E(C). The cover number of a clutter C is defined as

α0(C) = min{ |A| | A is a vertex cover of C }.

Definition 3.9. A clutter C is said to be unmixed if every minimal vertex cover B satisfies
|B| = α0(C).

Definition 3.10. A matching of a clutter C is a set of pairwise disjoint edges {e1, . . . , es}.
A matching {e1, . . . , es} of C is called perfect if

∪s
i=1 ei = V (C).

Definition 3.11. A clutter C is called a König clutter if there exists a matching with
exactly α0(C) edges.

Proposition 3.12 ([16], Theorem 4.9). Let C be a König clutter. Then C is unmixed if
and only if there exists a perfect matching e1, . . . , eg with g = α0(C) such that the following
condition holds: for any two distinct edges e, e′ ∈ E(C) and any two distinct vertices x ∈ e
and y ∈ e′ contained in some ei, one has that

(e \ {x}) ∪ (e′ \ {y})

contains an edge of C.

This result plays a central role in connecting the combinatorial structure of König clutters
with algebraic properties such as unmixedness and the Cohen–Macaulay condition. In
particular, it can be interpreted as the structural counterpart of the negative form of
Lemma 3.6 while that lemma identifies situations guaranteeing the strong persistence
property, this characterization describes the combinatorial obstructions that prevent it.
The interplay between these two viewpoints reveals that the failure of strong persistence
is intimately related to the failure of the unmixedness condition, thereby highlighting a
deep link between persistence phenomena and the classical theory of König and Cohen–
Macaulay clutters.
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Definition 3.13. The incidence matrix of a clutter C, denoted by AC, is the matrix whose
columns are the characteristic vectors of the edges of C. An r-cycle of C is an alternant
sequence xi1 , ej1 . . . xir , ejr of vertices and edges such that its correspond square submatrix
r×r submatrix of AC having exactly two entries equal to 1 in each row and in each column.

The following theorem provides the anticipated bridge connecting the strong persistence
property with other fundamental algebraic conditions, such as the Cohen–Macaulay and
König properties. It shows that under suitable combinatorial restrictions specifically, the
absence of 4-cycles in a König unmixed clutter automatically satisfies strong persistence.
This result establishes a direct link between persistence phenomena and the homological
behavior of the associated monomial ring, highlighting that strong persistence can be
interpreted as a combinatorial manifestation of Cohen–Macaulayness in this setting.

Theorem 3.14. [21, Theorem 8] Let C be a König unmixed clutter. If C does not contain
any 4-cycle, then C satisfies the strong persistence property.

Example 3.15. [15, Example 2.18] Let C0 be the clutter with vertex set {x1, . . . , x6} and
edge set

E(C0) = {x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6,

x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6 }.

Since
(I(C0)3 : I(C0)) 6= I(C0)2,

the clutter C0 does not satisfy the strong persistence property.

The clutter C0, originally mentioned in this context by Villarreal, has become a classical
and somewhat puzzling example in the study of the persistence properties of monomial
ideals. It fails to satisfy the strong persistence property (SPP), nevertheless have the
persistence property (PP). This makes C0 a striking counterexample in the ongoing effort
to characterize persistence in terms of purely combinatorial invariants.

4 Cones and contractions

Since one of our main goals is to compare the number of clutters on [n] that satisfy the
strong persistence property with those defined on [n − 1] and [n + 1], we introduce a
sequence of propositions that allow us to locate, bound, and relate these quantities across
different levels. These results provide a combinatorial framework for understanding how
the persistence behavior evolves when expanding or contracting the ground set, that is,
when moving upward or downward between consecutive levels in the hierarchy of clutters.

Definition 4.1. Let X = {x1, . . . , xr} be a finite set, A ⊆ X and let y /∈ X. We define
the simple cone as the clutter

Ay = (X ∪ {y}, E),

where E = {X} ∪ { {y, xi} | xi ∈ A }.
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Example 4.2. Consider Ay where X = {x1, x2, x3, x4, x5, x6, x7}, A = {x1, x2, x3, x4, x5}

E(Ay) = {X, {y, x1}, {y, x2}, {y, x3}, {y, x4}, {y, x5}}

y

x1
x2

x3
x4

x5

x6
x7

Proposition 4.3. [21, Proposition 9] Let X be a set, A ⊆ X and x /∈ X. Then Ax has
the strong persistence property.

Definition 4.4. Let C = (X,E) be a clutter with X = {x1, . . . , xr} a finite set and y /∈ X.
We define the cone of C as the clutter

Cy = (X ∪ {y}, Ey),

where Ey = { e ∪ {y} | e ∈ E }.

Theorem 4.5. ([21, Proposition 6]) Let C be a clutter. Then C satisfies the persistence
property if and only if its cone Cy also satisfies the persistence property.

Theorem 4.6. ([21, Proposition 5]) Let C be a clutter. Then C satisfies the strong
persistence property if and only if its cone Cy also satisfies the strong persistence property.

This theorem shows that the persistence and strong persistence properties are stable under
the cone operation, a fundamental type of expansion that preserves the combinatorial
structure while increasing the dimension. Conceptually, it means that the persistence
behavior of a clutter depends on intrinsic relations among its edges rather than on the
specific number of vertices. Consequently, the cone construction provides a convenient tool
for inductive arguments on the size of the vertex set and for building higher-dimensional
examples from known persistent clutters.

Definition 4.7. Let C = (X,E) be a clutter with X = {x1, . . . , xr} a finite set and y /∈ X.
We define the edge cone of C as the clutter

Cy = (X ∪ {y}, Ey),

where Ey = E ∪ { {y, xi} | xi ∈ X }.

Conjecture 4.8. Let C be a clutter. Then C satisfies the (strong) persistence property if
and only if its edge cone Cy satisfies the (strong) persistence property.
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The conjecture extends the previous theorem to the edge cone, a more intricate construc-
tion that combines both the original edges of C and the new edges incident to the added
vertex y. If true, this statement would imply that the persistence behavior of clutters is in-
variant under one of the most natural combinatorial extensions, bridging the gap between
local and global stability. In particular, proving this conjecture would strengthen the con-
nection between persistence properties and structural operations on clutters, providing
a unified framework for understanding how algebraic invariants evolve under controlled
expansions. From a broader perspective, it would suggest that persistence is not only a ho-
mological invariant but also a combinatorially stable feature within the class of monomial
ideals associated to clutters.

Proposition 4.9. [21, Proposition 7] C = (V,E) has the strong persistence property if and
only if C′ = (V,E′) has the strong persistence property, where E′ = {e \

∩
e′∈E e′ | e ∈ E}.

This result provides an alternative way to interpret the strong persistence property through
the operation of intersecting edges. In particular, if the intersection of all edges in C
is nonempty, we can view the clutter as a sequence of cones obtained by successively
adding each element of this intersection as a new vertex shared by all edges. Hence,
the persistence behavior of C can be studied inductively by analyzing the corresponding
cones. This perspective not only simplifies the combinatorial structure but also clarifies
the geometric intuition behind the preservation of the strong persistence property under
cone-like extensions.

Proposition 4.10. [21, Proposition 8] A clutter C with 3 edges has the strong persistence
property.

Theorem 4.11. [21, Theorem 9] If I is a squarefree monomial ideal in K[x1, x2, x3, x4],
then I has the strong persistence property.

Corollary 4.12. [21, Corollary 7] If I ⊆ K[x1, . . . , xn] is a squarefree monomial ideal
without the strong persistence property, then n ≥ 5 and there is k ≥ 3 such that (Ik : I) 6=
Ik−1.

Corollary 4.13. Let C = (X,E) be a clutter, let x /∈ X, and fix xi ∈ X. Define

C′
xi

=
(
X ∪ {x}, E′) with E′ = E ∪

{
{x, xi}

}
.

Then I(C′
xi
) has the strong persistence property.

Proof. Set e0 = {x, xi} ∈ E′. Consider

A = { e ∩ e0 | e ∈ E′ }.

If e ∈ E, then e ∩ e0 is either ∅ or {xi} depending on whether xi ∈ e; for e = e0 we have
e ∩ e0 = e0 = {x, xi}. Hence

A = {∅, {xi}, {x, xi}},

which is a chain under inclusion. By Lemma 3.6, this implies that I(C′) has the strong
persistence property.
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This construction provides a simple lifting device: starting from any clutter on X, by
adjoining a new vertex x and a single edge {x, x1} we obtain a clutter on X ∪ {x} that
satisfies strong persistence. Operationally, it converts arbitrary clutters on a given level
into persistent clutters one level up, and will be useful to build families of examples and to
compare the distribution of clutters with (strong) persistence across adjacent vertex sets.

Definition 4.14. Let C = (V,E) be a clutter with x ∈ V . The contraction of x is the
clutter C/x with vertex set V \ {x} and edge set min{e \ {x} | e ∈ E}.

Definition 4.15. Let C = (V,E) be a clutter and let x ∈ V be a vertex. The deletion (or
vertex deletion) of C with respect to x is the clutter

C \ x = (V \ {x}, E′),

where
E′ = { e ∈ E | x /∈ e }.

That is, C \ x is obtained from C by removing the vertex x and all edges that contain x.

Example 4.16. [21, Example 4] Let C′
0 be the clutter with vertex set V (C0) ∪ {x} with

x 6∈ V (C0) and edge set
E(C′

0) = E(C0) ∪ {{x, x1}},

where C0 is as in Corollary 4.13 above. By that corollary, I(C′
0) has the strong persistence

property, while C′
0 \ x = C0 does not.

Moreover, we can remove any vertex from C′
0 and still obtain a clutter whose edge ideal

satisfies the strong persistence property. Indeed, if we delete any vertex different from
x and x1, the resulting clutter still contains the edge {x, x1}, and therefore, by applying
the same reasoning as in Corollary 4.13, it retains the property. On the other hand, if
we remove x1, the resulting clutter has five vertices, and as we shall see later, all clutters
with five vertices satisfy the strong persistence property. This observation highlights the
robustness of the construction: the addition of the edge {x, x1} not only induces persistence
in the extended clutter but also stabilizes it under vertex deletions.

Example 4.17. Let C0 be the Villarreal clutter introduced in [15, Example 3.2], which
does not satisfy the strong persistence property. C′

0 has the strong persistence property.
However (C′

0)\x, with x /∈ V (C0) does have strong persistence property and the clutter C′
0\xi

does have the strong persistence property for each xi ∈ V (C0).

This phenomenon is remarkable: while C0 provides a counterexample to the strong per-
sistence property, all of its vertex deletions restore the property. This suggests that per-
sistence can be more stable in lower-dimensional or smaller vertex configurations. From a
combinatorial viewpoint, this behavior is highly informative, as it indicates that studying
the persistence of deletions of a clutter may reveal structural mechanisms responsible for
the failure of persistence at the original level. In particular, this observation may serve as
a useful tool for analyzing persistence in clutters on n − 1 vertices and could provide an
inductive approach to understanding how the property behaves across consecutive levels
in the hierarchy of clutters.
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Proposition 4.18. [21, Proposition 10] Let C be a clutter and x ∈ V (C). If C has the
(strong) persistence property, then C/x has the (strong) persistence property.

Proposition 4.18 is particularly significant because they allow us to study the persistence
and strong persistence properties because it allows us moving downward in the vertex
hierarchy, that is, from a clutter on n vertices to one on n − 1 vertices. Together with
the results that describe how to extend clutters upward (from n to n + 1 vertices) while
preserving persistence, these propositions provide two complementary approaches to com-
pare and estimate the number of clutters with the SPP at consecutive levels. Hence, we
can attempt to bound this quantity both from below and from above, using estimates
depending on the levels n − 1 and n + 1, respectively. This perspective opens the way
to recursive or inductive methods for understanding the distribution of persistent clutters
across the vertex hierarchy.

The converse of Proposition 4.18 does not hold. Indeed, let C0 be the Villarreal clutter
described above. For every vertex xi ∈ V (C0), the contraction C0/xi is a simple graph,
and thus its edge ideal satisfies the strong persistence property by [15, Lemma 2.12].

However, the original clutter C0 does not satisfy the SPP. This fact is especially important,
since it shows that a clutter can have all its contractions satisfying the strong persistence
property (and analogously the persistence property) while failing to possess the property
itself. Such examples where C fails SPP but every C/xi satisfies it is crucial for understand-
ing how persistence behaves under vertex contractions and highlights subtle asymmetries
between local and global persistence behavior.

Proposition 4.19. Let C = (X,E) be a clutter, and let ϕ : X −→ Y be an injective map.
Then the clutter

ϕ(C) = (Y, ϕ(E)), where ϕ(E) = {ϕ(e) | e ∈ E},

has the (strong) persistence property if and only if C has the (strong) persistence property.

Proof. It follows from the fact that ϕ induces a ring isomorphism of K[X] and K[ϕ(X)]
sending I(C) onto I(ϕ(C)). The restriction of this automorphism yields an isomorphism
between the two ideals, and hence the (strong) persistence property is preserved.

5 Mengerian property and strong persistence property

To deepen the study of the strong persistence property, it is often useful to consider a
weaker version that still captures its essential behavior. This leads to the concept of the
symbolic strong persistence property, which we introduce next.

Definition 5.1. Let I be an ideal of a commutative ring R. We say that I satisfies the
symbolic strong persistence property if I(k+1) : I(1) = I(k) for all k ≥ 1.
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In [21, Theorem 11] it is proved that the strong persistence property implies the symbolic
strong persistence property, and in [12] it is also shown that every square-free monomial
ideal satisfies the symbolic strong persistence property. However, the converse statement
is false, even within the class of monomial ideals.
In this section, we focus on the study of the strong persistence property in the case of
square-free monomial ideals. Before proceeding further, we recall some basic notions and
fix notation.
It is well known there is a one-to-one correspondence between the family of square-free
monomial ideals of the polynomial ring K[x1, . . . , xn] and the class of clutters on the vertex
set {x1, . . . , xn}. This correspondence is given by the edge ideal of a clutter, denoted by
I(C). By a slight abuse of notation, we will use the same symbol to denote both an edge
and its corresponding monomial.

Definition 5.2. Let R = K[x1, . . . , xn] be a polynomial ring over a field K, and let

f =
∑
a∈Nn

cax
a (ca ∈ K)

be a polynomial. The support of f is the finite set

supp(f) := {xa | ca 6= 0}.

lemma 5.3. Let I be a monomial ideal. The following conditions are equivalent:

(1) I is primary.

(2) If xi | m for some m ∈ G(I), then there exists an integer k ≥ 1 such that xki ∈ G(I).

Proof. (1) ⇒ (2): Let m = x
αi1
i1

· · ·xαit
it

∈ G(I), and suppose that xij | m for some j ∈ [t].
Since m ∈ G(I), we have m′ = m/x

αij

ij
/∈ I. As I is primary, there exists r ≥ 1 such that

(x
αij

ij
)r ∈ I, hence xkij ∈ G(I) for some k.

(2) ⇒ (1): Let

A = {xi | xsi ∈ G(I) for some s } and A′ = {x1, . . . , xn} \A.

Take f, g ∈ R such that fg ∈ I but f /∈ I. Assume without loss of generality supp(f)∩I =
∅, since otherwise we could write f = f1 + f2 with supp(f1) ∩ I = ∅ and supp(f2) ⊆ I,
obtaining f1g = fg − f2g ∈ I and f1 ∈ I.
If g /∈

√
I, then there exists u ∈ supp(g) such that xi ∤ u for every xi ∈ A. Fix a

lexicographic monomial order ≤ such that xi ≤ xj for each xi ∈ A′ and xj ∈ A. And let

v = min
≤

{u ∈ supp(g) | u /∈
√
I }.

Let m = min≤ supp(f). Since mu ∈ supp(fg) and fg ∈ I, there exists h ∈ G(I) such that
h | vm. Because gcd(h, v) = 1, we have h | m, contradicting f /∈ I. Hence g ∈

√
I, so

gk ∈ I for some k, and therefore I is primary.
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Corollary 5.4. If Q is a primary monomial ideal, then Qk is also a primary ideal for
every integer k ≥ 1.

Proposition 5.5. [18, Lemma 5.1] Let Q1, . . . , Qr be primary monomial ideals such that√
Qi 6=

√
Qj for all i 6= j, and suppose that the set {

√
Q1, . . . ,

√
Qr} has no containment

relations among its elements. If each Qi satisfies the strong persistence property, then for
every k ≥ 1 one has

r∩
i=1

Qk+1
i :

r∩
i=1

Qi =
r∩

i=1

Qk
i .

Proof. Let m ∈
∩r

i=1Q
k+1
i :

∩r
i=1Qi. Fix an index 1 ≤ j ≤ r and choose, for each i 6= j,

an element xi ∈ Qi \ Pj , where Pj =
√
Qj . For any a ∈ Qj , we have

max1 · · ·xj−1xj+1 · · ·xr ∈
r∩

i=1

Qk+1
i ⊆ Qk+1

j .

Since Qj is a monomial primary ideal, Qk+1
j is also primary; hence ma ∈ Qk+1

j , and
therefore m ∈ Qk+1

j : Qj . By the strong persistence property, we conclude m ∈ Qk
j . Thus,

m ∈
r∩

i=1

Qk
i .

The reverse inclusion is immediate, and the proof follows.

lemma 5.6. [12, Proposition 5] Every prime monomial ideal satisfies the strong persistence
property.

Proof. Let P = (xi1 , . . . , xir) be a prime monomial ideal. Consider m ∈ P k+1 : P . In
particular, mxi1 ∈ P k+1, which means that there exists a monomial m′ that is the product
of k + 1 generators of P such that mxi1 = ℓm′ for some monomial ℓ. Dividing both sides
by xi1 yields m ∈ P k. Hence, P satisfies the strong persistence property.

Theorem 5.7. [18, Theorem 5.1] Every square-free monomial ideal satisfies the symbolic
strong persistence property.

Proof. Let I be a square-free monomial ideal and let P1, . . . , Pr denote its minimal prime
ideals. By Proposition 5.5 and Lemma 5.6, we obtain

r∩
i=1

P k+1
i :

r∩
i=1

Pi =
r∩

i=1

P k
i for every k.
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Moreover, by [7, Proposition 1.4.4], we know that

I(k) =
r∩

i=1

P k
i for all k.

Hence,
I(k+1) : I = I(k) for every k,

which proves that I satisfies the symbolic strong persistence property.

Corollary 5.8. [18, Corollary 5.1] If I is a normally torsion-free square-free monomial
ideal, then I satisfies the strong persistence property.

Proof. By Theorem 5.7, we have

I(k+1) : I(1) = I(k) for every k.

Moreover, by [23, Theorem 14.3.6] (v) and (vi), it follows that

I(k) = Ik for all k.

Hence, I has the strong persistence property.

Definition 5.9. Let C = (V,E) be a clutter with V = {x1, . . . , xn}. For a vector w =
(w1, . . . , wn) ∈ Nn, the parallelization of C with respect to w, denoted Cw, is the clutter
obtained as follows:

1. Replace each vertex xi by wi copies

x
(1)
i , . . . , x

(wi)
i .

2. For each edge e ∈ E, form all edges of the form

{x(j)i | xi ∈ e, 1 ≤ j ≤ wi }.

The resulting clutter Cw is called the parallelization of C.

Theorem 5.10. [23, Theorem 14.3.6] Let C = (V,E) be a clutter and let I(C) ⊂
K[x1, . . . , xn] be its edge ideal. The following statements are equivalent.

1. Every parallelization Cw of C satisfies the König property;

β1(Cw) = α0(Cw) for all w ∈ NV .
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2. I(C) is normally torsion free; that means,

Ass(I(C)k) ⊆ Ass(I(C)) for all k ≥ 1.

3. The symbolic and ordinary powers of I(C) coincide:

I(C)(k) = I(C)k for all k ≥ 1.

Corollary 5.11. If C is a Mengerian clutter. Then I(C) has the strong persistence
property.

Proof. Its follows form Corollary 5.8 and Theorem 5.10

Example 5.12. The edge ideal of C0 has the symbolic strong persistence property but fail
the strong persistence property.

6 Hibi ideals

Definition 6.1. [7, Page 159] Let (P,≥) be a finite partially ordered set (a poset, for
short) with P = {p1, . . . , pn}. A poset ideal of P is a subset I ⊆ P such that if pi ∈ I and
pj ≤ pi, then pj ∈ I. To any poset ideal I of P , we associate the monomial

uI =
( ∏

pi∈I
xi

)( ∏
pi /∈I

yi

)
∈ K[x1, . . . , xn, y1, . . . , yn].

The set of all poset ideals of P is denoted by J (P ). We consider ∅ ∈ I(P ). Then the Hibi
ideal of P is the monomial ideal of S defined as

HP = (uI : I ∈ J (P )).

Theorem 6.2. [4, Lemma 5.9] Let HP be a Hibi ideal. Then

Ass(Hk
P ) = {(xi, yi) : pi, pj ∈ P, pi ≤ pj}, ∀ k ≥ 1.

Definition 6.3. Let I = (xe1 , . . . , xeq) ⊆ K[x1, . . . , xn] be a square-free monomial ideal
with exponent vectors ej ∈ {0, 1}n. The Alexander dual of I is the monomial ideal

I∨ :=

q∩
j=1

(xi | (ej)i = 1).

Equivalently, I∨ is generated by monomials corresponding to minimal vertex covers of the
clutter associated to I.

Corollary 6.4. [7, Lemma 9.1.9] Let HP be a Hibi ideal. Then

H∨
P = (xiyj : pi, pj ∈ P, pi ≤ pj), .
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Example 6.5. [23, Exercise 7.7.27] Let

R = Q[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12]

and consider the monomial ideal

I = (x1x2, x2x3, x3x4, x4x5, x5x6, x6x7, x7x8, x8x9, x9x10, x10x11,

x11x12, x5x12, x3x7, x4x6, x4x9, x5x10, x1x9, x2x8, x7x12, x8x11).

J = I∨ its Alexander dual. Then, as shown using Macaulay2, the inclusion

Ass(R/J3) ⊈ Ass(R/J4)

does not hold. Hence, the Alexander dual J of I but fails the persistence property.

This example is of particular importance because it disproves a conjecture that was once
considered plausible: that a clutter has the strong persistence property if and only if its
Alexander dual also satisfies it. If this conjecture were true, then by Corollary 6.4 we
would immediately deduce that every Hibi ideal possesses the strong persistence property.
However, the counterexample above shows that this dual equivalence fails in general,
revealing that the strong persistence property is not preserved under Alexander duality.
Consequently, the relationship between a clutter and its dual must be treated with greater
care while their combinatorial structures are closely intertwined, persistence reflects deeper
algebraic behavior that is not necessarily symmetric.

Theorem 6.6. [4, Lemma 5.9] Every Hibi ideal HP associated to a finite partially ordered
set P satisfies:

1. H
(k)
P = Hk

P , for all k ≥ 1. Furthermore, HP is a Mengerian ideal.

2. Ass(R/Hk
P ) = Ass(R/HP ), for all k ≥ 1.

In particular, the set of associated primes of Hk
P stabilizes immediately at k = 1.

Theorem 6.7. Every Hibi ideal HP satisfies both the persistence property and the strong
persistence property; that is,

Ass(R/Ht
P ) ⊆ Ass(R/Ht+1

P ) and Ht+1
P : HP = Ht

P for all t ≥ 1.

Proof. This result follows directly from Corollary 5.8, which establishes that any monomial
ideal that is normally torsion-free necessarily satisfies the strong persistence property.
From Theorem 6.6, they automatically fulfill the persistence property.

This connection provides a clear algebraic bridge between the combinatorial structure
of partially ordered sets and the persistence behavior of their corresponding edge ideals.
In particular, it highlights that persistence in Hibi ideals is not accidental but a struc-
tural consequence of their normality and Mengerian nature, reinforcing the idea that the
strong persistence property is an inherent and robust feature within this important class
of monomial ideals.
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Remark 6.8. Let n be a natural number and let Pn = {p1, . . . , pn}. Consider a partially
ordered set (Pn+1,≤); without loss of generality, we may assume that pn+1 is a maximal
element. Define

In+1 = { pi ∈ Pn+1 | pi ≤ pn+1 }.
It is clear that In+1 is the unique ideal of (Pn+1,≤) containing pn+1. Then we have that

I ∈ J (Pn) if and only if I ∈ J (Pn+1) \ {In+1}.

Moreover, note that In+1 \ {pn+1} ∈ J (Pn). Hence,

G(HPn+1) = {myn+1 | m ∈ G(HPn) } ∪ {uIn+1 }.

Therefore, the set {myn+1 | m ∈ G(HPn)} forms a cone over G(HPn), and we obtain the
relation

HPn+1 = yn+1HPn + (uIn+1).

Now, since both HPn+1 and HPn satisfy the strong persistence property, it is natural
to ask whether this behavior extends to more general constructions. In particular, we
may consider operations such as the Hibi contraction and the Hibi lifting, and investigate
whether these operations preserve the strong persistence property when moving between
levels that is, when descending or ascending in the poset hierarchy. This question suggests
a deeper structural stability of the persistence phenomena within families of Hibi ideals.

7 Square-free monomial ideals in K[x1, x2, x3, x4, x5] and the
strong persistence property

In this section, we discuss the fact that every square-free monomial ideal in the polyno-
mial ring K[x1, x2, x3, x4, x5] over a field K satisfies the strong persistence property. To
establish this result, we begin with the following definitions and notations, which will be
used throughout the section.

Proposition 7.1. [2, Proposition 3.5] Suppose that C is a strongly persistent clutter,
x /∈ V (C), and Cx is the cone over C. Then C′ is a strongly persistent clutter with
V (C′) = V (C) ∪ {x} and E(C′) = {V (C)} ∪ E(Cx).

This result is particularly useful for our purpose of studying the families of clutters that
satisfy the strong persistence property across different vertex levels n. It provides a con-
structive mechanism to move between levels while preserving the property under conic
extensions, allowing a systematic comparison of the distribution of strongly persistent
clutters as the number of vertices increases. Moreover, this proposition can be regarded as
a generalization of Theorem 4.6, since it extends the structural preservation of the strong
persistence property from specific configurations to a broader class of clutter transforma-
tions.

Proposition 7.2. [2, Proposition 3.6] Let X be a finite set and let x, y /∈ X with x 6= y.
Suppose that C is a clutter on X ∪ {x, y} such that for every e ∈ E(C), either x ∈ e or
y ∈ e, but {x, y} ⊈ e. Then the following statements hold:
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(i) The clutter C′ is strongly persistent, where E(C′) = E(C) ∪ {{x, y}}.

(ii) The clutter C′ is strongly persistent, where E(C′) = E(C) ∪ {X, {x, y}}.

This result is of particular importance for our study, since it provides a way to move
between different levels of clutters. On one hand, it allows us to analyze families of clutters
by ascending from level n − 1 to level n + 1, and, when combined with the elimination
and contraction results, to descend again to level n. In this sense, one can reach level
n through two distinct paths: by lifting from n − 1 or by projecting from n + 1. This
dual approach offers refined control and sharper bounds for the distribution of clutters
satisfying the strong persistence property. On the other hand, this result also contributes
to the study of suspension operations and provides insight into the conjecture concerning
them stated in Conjecture 4.8.

Proposition 7.3. [2, Proposition 3.7] Let C be a strongly persistent clutter on a finite set
X, and let x, y /∈ X with x 6= y. Then the clutter C′ is defined by

V (C′) = X ∪ {x, y} and E(C′) = { e ∪ {x}, e ∪ {y} | e ∈ E(C) }

is strongly persistent.

The following lemmas and propositions address particular cases for clutters with n =
5 vertices. They play a key role in establishing the result asserting that every clutter
defined on five vertices satisfies the strong persistence property. In addition, these results
contribute to our ongoing objective of controlling the level-lifting process within families
of clutters. Specifically, they allow us to analyze and bound the cardinalities of such
families when moving from a set of vertices [n] to the higher levels [n + 3], [n + 4], or
[n + 5]. This perspective provides a clearer understanding of how the strong persistence
property behaves as we increase the number of vertices, and it becomes an essential tool
for estimating and comparing the growth of strongly persistent clutters across different
dimensions.
The interaction between these results and the operations of vertex elimination and con-
traction is especially relevant. By combining these two descending operations with the
ascending constructions described earlier, we can reach the same level n through two dis-
tinct paths either by lifting from level n− 1 or by descending from level n+ 1. This dual
approach not only reinforces the structural understanding of persistence within clutters
but also sharpens the bounds for the families Sn and Cn, providing a clearer picture of
how strong persistence behaves across dimensions.

lemma 7.4. [2, Lemma 3.8] Let X = {x, y, x1, x2, x3} be a finite set of cardinality 5, and
let C be a clutter on X satisfying the following conditions:

(i) Every edge e ∈ E(C) has cardinality |e| = 3;

(ii) {x, y} ⊈ e for all e ∈ E(C);

(iii) {x1, x2, x3} /∈ E(C).
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Then C is strongly persistent.

lemma 7.5. [2, Lemma 3.9] Let X = {x, y, x1, x2, x3} be a finite set of cardinality 5, and
let C be a clutter on X such that for every e ∈ E(C) the following conditions hold:

(i) |e| = 3;

(ii) {x, y} ⊈ e;

(iii) {x1, x2, x3} ∈ E(C).

Then C is strongly persistent.

lemma 7.6. [2, Lemma 3.10] Let C = (V,E) be a clutter with V (C) = {x, y, x1, x2, x3}
satisfying the following conditions:

(1) |e| = 3 for each e ∈ E(C);

(2) There exists a unique edge e ∈ E(C) such that {x, y} ⊆ e;

(3) e ∩ {x, y} 6= ∅ for each e ∈ E(C).

Then the following statements hold.

(i) C is strongly persistent.

(ii) C′ is strongly persistent, where E(C′) = E(C) ∪ {{x1, x2, x3}}.

Proposition 7.7. [2, Proposition 3.11] Let C be a clutter with E(C) = {e1, e2, e3, . . . , er}
such that e1 = {x, y} is an edge of cardinality two, and there exists an edge e2 satisfying
e1 ∩ e2 = ∅, while ej ∩ e1 6= ∅ for each 3 ≤ j ≤ r. Then C is strongly persistent.

The significance of Proposition 7.7 lies in the fact that it allows us to study clutters that
belong to levels two units above a given configuration. By identifying an edge of size two
that interacts with all remaining edges except for one disjoint edge, this result provides a
constructive criterion to lift clutters from level n to level n+2 while preserving the strong
persistence property. This lifting process is particularly relevant because it offers a way to
connect the structural behavior of small clutters with that of higher-dimensional families,
thereby facilitating the recursive study of how the strong persistence property behaves
under successive enlargements of the vertex set.
Moreover, Proposition 7.7 can be viewed as a natural generalization of Proposition 7.2,
since it extends the configuration of two distinguished vertices x and y to a broader setting
where the connectivity pattern among the remaining edges is controlled combinatorially.
In this sense, Proposition 7.7 are not only strengthens the scope of Proposition 7.2 but also
provides a structural bridge between local two-vertex interactions and global persistence
phenomena in higher levels of the clutter hierarchy.
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Corollary 7.8. [2, Proposition 3.12] Let C be a clutter on X = {x1, x2, x3, x4, x5} such
that 2 ≤ |e| ≤ 3 for each e ∈ E(C), and C has only two edges e1, e2 with |e1| = |e2| = 2
and e1 ∩ e2 = ∅. Then C is strongly persistent.

This result is particularly useful as it provides an explicit construction of a strongly persis-
tent clutter from two disjoint vertex sets, allowing the inclusion of both controlled bipartite
relations (through the subset A ⊆ X) and a complete edge X that ensures the propaga-
tion of persistence. In particular, Corollary 7.8 extends Proposition 4.3 by generalizing
the notion of a simple cone to a richer structure that combines bipartite and complete
components while preserving strong persistence in a broader setting. This generalization
is valuable for generating new families of clutters with stability properties and for studying
the interaction between bipartite and complete substructures within the same algebraic
framework.

Definition 7.9. [20, Definition 1.1] A matroid M is an ordered pair M = (E, I), where
E is a finite set, called the ground set, and I is a nonempty collection of subsets of E,
called the independent sets, satisfying the following axioms:

(I1) ∅ ∈ I;

(I2) If I ∈ I and J ⊆ I, then J ∈ I (hereditary property);

(I3) If I, J ∈ I and |I| < |J |, then there exists an element x ∈ J \ I such that I ∪{x} ∈ I
(exchange property).

The maximal elements of I under inclusion are called the bases of the matroid. All bases
of a matroid have the same cardinality, which is called the rank of the matroid.

lemma 7.10. [2, Lemma 3.16] Let C be a clutter on the vertex set {x1, x2, x3, x4, x5} such
that |e| = 3 for every e ∈ E(C). If any two distinct vertices xi, xj ∈ V (C) are contained
together in at least two distinct edges, then E(C) forms the collection of bases of a matroid.
Consequently, C is strongly persistent.

Proposition 7.11. [2, Proposition 3.17] Let C be a clutter on {x1, x2, x3, x4, x5} such that
|e| = 3 for each e ∈ E(C). Then C is strongly persistent.

Theorem 7.12. [2, Theorem 3.18] Every square-free monomial ideal in
K[x1, x2, x3, x4, x5] has the strong persistence property.

Theorem 7.12 is fundamental for the study of clutters, since it establishes that every
square-free monomial ideal in five variables satisfies the strong persistence property. This
result provides a powerful reduction principle: to understand the behavior of persistence
in general, it suffices to analyze the case n > 5. Consequently, it allows us to identify
families of clutters with the SPP more efficiently and to refine bounds on the number of
persistent clutters by relating them to the behavior of the five variable case. In particular,
this theorem highlights that the smallest clutter failing the property is precisely C0, which
plays a key role in the structure theory of non-persistent configurations.
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8 Low and Upper bound for | Sn |

In this section, we focus on establishing bounds for the cardinality of Sn, the family of
clutters satisfying the strong persistence property. Our approach is based on the results
developed in the survey, where several algebraic and combinatorial constructions were
introduced to compare families of clutters at consecutive levels n− 1, n, and n+1. These
comparisons allow us to estimate the growth and distribution of strongly persistent clutters
through recursive inequalities and level transitions.

Proposition 8.1. (n+ 1) |Cn| + |Sn| ≤ |Sn+1|, for n > 2

Proof. Given C = ([n], E) ∈ Cn, we consider the clutters

C′ := ([n+ 1], E(C) ∪ {{n+ 1}}) and C′
i for i ∈ V (C),

where each C′
i is defined as in Corollary 4.13, for every i ∈ [n]. From Proposition 3.4 and

Corollary 4.13, these clutters have the persistence property.
Finally, if D = ([n], F ) ∈ Sn, then we set

D̄ := ([n+ 1], F ) ∈ Sn+1.

Since C′, C′
i and D̄ are pairwise distinct clutters in Sn+1, and there are (n+1) |Cn|+ |Sn|

of them, we obtain
(n+ 1) |Cn|+ |Sn| ≤ |Sn+1|.

Remark 8.2. In the above proposition, if Conjecture 4.8 holds, we additionally obtain
that Cx satisfies the strong persistence property. Hence,

(n+ 3) |Cn| + |Sn| ≤ |Sn+1|.

The results presented in the survey are particularly significant because the more operations
we can define to move upward or downward between levels, the sharper our bounds on
|Sn| become. Each new operation preserving (or characterizing the loss of) the strong
persistence property contributes to a finer understanding of the structure and asymptotic
behavior of the families of clutters across dimensions

Proposition 8.3. |Cn+1| ≤ |Cn|2, for n > 0.

Proof. Let C = ([n+ 1], E) ∈ Cn+1 and we define

E′ = { e ∈ E | n+ 1 ∈ e }, E′′ = { e ∈ E | n+ 1 /∈ e },

and
E′′′ = { e \ {n+ 1} | e ∈ E′ },

Is clear that following its holds



38 Antichain families in monolmial algebras

(i) E′ is a clutter on [n+ 1] in which every edge contains n+ 1.

(ii) The family E′′′ is a clutter on [n], and E′ is precisely the cone over E′′′ (E′ =
E′′′n+ 1).

(iii) E′′ is the edge set of the deletion C \ {n+ 1}, hence E′′, E′′′ ⊆ Cn.

Consequently, since E = E′ ∪ E′′ and |E′′′| = |E′|, we have

max{ |E′|, |E′′|, |E′′′| } ≤ |Cn|, and therefore |Cn+1| ≤ |Cn|2.

This decomposition expresses every clutter on n+1 vertices as a combination of a deletion
and a cone derived from clutters on n vertices. Hence, the number of possible clutters in
level n+1 is bounded by the square of those in level n. This bound is rough but useful, as
it gives a recursive framework that helps control the growth of Cn across levels.

Proposition 8.4. 2 |Nn| ≤ |Nn+1| for n > 0

Proof. By Theorem 4.6, the cone operation preserves the failure of the strong persistence
property; that is, for every C ∈ Nn and every new vertex z /∈ V (C), one has

C ∈ Nn ⇐⇒ Cz ∈ Nn+1.

Define the two injective maps

Φx(C) = Cx, Φy(C) = Cy.

Since the vertices x and y are distinct and external to V (C), the resulting clutters Φx(C)
and C belong to disjoint copies of Nn inside Nn+1. Each Φz is injective because contracting
the vertex z recovers C. Thus, there exist two disjoint embeddings of Nn into Nn+1, which
gives

2 |Nn| ≤ |Nn+1|.

Proposition 8.5. We can decompose the family Nn as a disjoint union

Nn =

( n
⌊n/2⌋)∪
r=1

Nn,r,

where Nn,r denotes the subset of Nn consisting of all clutters C satisfying |E(C)| = r and

( n
⌊n/2⌋)∑
r=1

|Nn,r| 2r ≤ |Nn+1|.



E. Reyes and J. Toledo T. 39

Proof. Given C = ([n], E) ∈ Nn and a subset E1 ⊆ E, let E2 = E \ E1, and define the
clutter

CE2
E1

= ([n+ 1], E1 ∪ E2x),

where x = n+ 1 and E2x = {e ∪ {x} | e ∈ E2} denotes the cone over E2.
By Theorem 4.6, if C ∈ Nn then CE2

E1
∈ Nn+1. Indeed, if CE2

E1
were strongly persistent,

then contracting the vertex x would yield C = (CE2
E1

)/x, implying C ∈ Sn, a contradiction.
Therefore, CE2

E1
∈ Nn+1.

Moreover, if E(CE2
E1

) = E(CE′
2

E′
1
), then necessarily E2x = E′

2x, hence E2 = E′
2 and E1 = E′

1.
Thus, distinct decompositions of E yield distinct clutters.
Consequently, for each clutter C ∈ Nn,r, there exist 2r distinct clutters of the form CE2

E1
,

indexed by all subsets E1 ⊆ E. These 2r clutters form pairwise disjoint copies of Nn,r

embedded in Nn+1. Hence,

( n
⌊n/2⌋)∑
r=1

|Nn,r| 2r ≤ |Nn+1|.

9 Discussion and questions

Throughout this survey, we have explored the structural and algebraic mechanisms that
govern the strong persistence property (SPP) in clutters. A central goal has been to
understand and estimate the quantities

|Sn|, |Nn|, |Cn|,

representing respectively the number of clutters on [n] satisfying SPP, those failing SPP,
and the total number of clutters. The results presented so far give us both ascending
constructions (such as cones or vertex extensions) and descending ones (like vertex dele-
tions or contractions) that preserve or recover persistence. These tools together provide a
framework to establish lower and upper bounds for Sn in terms of quantities depending
on levels n−1 and n+1. we anticipate that operations such as the corona product, various
vertex-duplication schemes, and other combinatorial extensions could be used to improve
these bounds and generate recursive estimates. On the other hand, the study of dele-
tions and contractions suggests a possible approach to classify the minimal obstructions
to persistence.
Is there a characterization of clutters failing the SPP in terms of forbidden
embeddings? In other words, does there exist a finite list of minimal clutters {C1, . . . , Ct}
containing, for instance, the Villarreal clutter C0 such that a clutter C fails the SPP if and
only if it contains one of the Ci as an induced subclutter?
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Can analogous embeddings or structural characterizations be established for
the weaker persistence property (PP)? Understanding whether similar minimal ob-
structions exist for PP would not only clarify the hierarchy between these two properties
but also provide a unified combinatorial perspective on persistence phenomena in mono-
mial ideals.

In order to refine the current upper and lower bounds for |Sn|, it becomes crucial to
understand more precisely the algebraic and combinatorial operations that control the
transition between consecutive levels. Some operations preserve the strong persistence
property when moving upward (such as cones or corona products), while others main-
tain it when moving downward (like deletions and contractions). However, the extent to
which these and other operations can fully describe the propagation of persistence across
dimensions remains unclear.

Which additional operations should be studied to achieve a finer control over
the ascending and descending behavior of persistence, and consequently im-
prove the known bounds for |Sn|? Specifically, can we identify new constructions
such as generalized cone operations, layered corona products, or restricted vertex duplica-
tions that not only preserve the SPP/PP but also yield predictable changes in the number
of persistent clutters across levels? Developing a systematic catalogue of such operations
could lead to recursive formulas or asymptotic estimates for |Sn|, |Nn|, and |Cn|, provid-
ing a deeper quantitative understanding of persistence in the combinatorial landscape of
clutters.
These questions point toward a broader research direction aiming to describe persistence
properties via structural patterns and embedding relations, connecting combinatorial con-
figurations with the algebraic behavior of their corresponding edge ideals.
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