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ABSTRACT
It is our intention in this research to generalize some concepts in local cohomology such as free modules,
contravariant functor ext, covariant functor Ext and ideal transforms with e-exact sequences. The e-exact
sequence was introduced by Akray and Zebari [1] in 2020. We prove that essential free module is an
essential projective and a submodule rM of M is a quotient of an essential free module. Furthermore, we
obtain that for a torsion-free modules B, eex

n
R(P,B) = 0 whereas eExtnR(A,E) = 0 for every R-module A.

Also for any torsion-free modules we have an e-exact sequence 0 → Γa(B) → B → Da(B) → H1
a(B) → 0

and an isomorphism between B and rDa(B). Finally we generalize Mayer-Vietoris with e-exact sequences
in essential local cohomology, we obtain a special e-exact sequence.
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1 Introduction

Throughout this article, R will denote a Noetherian domain and B torsion free e-enjective
R-module. The Mayer-Vietoris sequence involves two ideals so throughout this research
b will denote a second ideal. In 1972, R. S. Mishra introduced a generalization for split
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2 Essential ideal transforms

sequence where a semi-sequence Mi−1
fi−1→ Mi

fi→ Mi+1 is called semi-split if Ker(fi) is
a direct summand of Mi [8]. So a semi-split is split if and only if it is exact. In 1999,
Davvaz and parnian-Goramaleky introduced a generalization for exact sequences called it
a U -exact sequence [6]. A submodule N of an R-module M is called essential or large
in M if it has non-zero intersection with every non-zero submodule of M and denoted
by N ⩽e M . Akray and Zebari in 2020 [1] introduced another generalization to exact
sequences of modules and instead of the equality of Im(f) with Ker(g) they took Im(f)

as a large (essential) submodule of Ker(g) in a sequence 0 → A
f→ D

g→ C → 0 and
called it essential exact sequence or simply e-exact sequence. Equivalently, a sequence of
R-modules and R-morphisms · · · → Ni−1

fi−1→ Ni
fi→ Ni+1 → · · · is said to be essential

exact (e-exact) at Ni, if Im(fi−1) ⩽e Ker(fi) and to be e-exact if it is e-exact at Ni for all
i. In particular, a sequence of R-modules and R-morphisms 0 → L

f1→ M
f2→ N → 0 is a

short e-exact sequence if and only if Ker(f1) = 0, Im(f1) ⩽e Ker(f2) and Im(f2) ⩽e N .
The authors of [1] studied some basic properties of e-exact sequences and established
their connection with notions in module theory and homological algebra [2]. Also, F.
Campanini and A. Facchini have worked on e-exact sequences and studied the relation
of e-exactness with some related functors like the functor defined on the category of R-
modules to the spectral category of R-modules and the localization functor with respect
to the singular torsion theory [5]. Furthermore, Akray and R. Mustafa in 2023 introduced
and proved further properties of e-exact sequences and we will restrict our discussion to
their applications on both injective modules and the torsion functor of local cohomology
[3]. “Local cohomology was introduced by Grothendieck in a 1961 Harvard seminar and
later published by Hartshorne in 1967. Next, this subject was studied by Hartshorne and
numerous authors even in the recent years see [9], [4] and [7].
In this research we generalize some concepts in local cohomology such as contravariant
functor eext, covariant functor eExt and ideal transforms with e-exact sequences.
In section two, we defined essential free modules (briefly e-free) and we present the basic
theory of essential free modules such as let P be a torsion-free module of A1. If a submodule
rP is an e-projective then every e-exact sequence e-split. A submodule rM of M is a
quotient of an e-free R-module. Also we describe the concept eext

R
n and eExtRn as well

as we characterize the properties of each of them. For example, let 0 → A′ → A →
A′′ → 0 be an e-exact sequence of R-modules , then there is a long e-exact sequence
0 → Hom(A′′, B) → Hom(A,B) → Hom(A′, B) → eext

1
R(A

′′, B) → eext
1
R(A,B) → · · ·

and also we have for any R-module A and any e–injective R-module E, eExtnR(A,E) = 0,
for all n ≥ 1.
In section three, we construct essential ideal transforms and we find the new e-exact
sequence by generalized the idea of Mayer-vietores sequence. Also we prove that for
any torsion-free R-module B there exists 0 6= r ∈ R such that ϵ∗ : B → rDa(B) is an
isomorphism if and only if Γa(B) = H1

a(B) = 0 and also we show that there is an e-
exact sequences 0 → Dr(a+b)(B) → Da(B)

⊕
Db(B) → Da∩b(B) → rH2

aDr(a+b)(B) →
rH2

aDa(B)
⊕

rH2
aDb(B) → rH2

aDa∩b(B) → · · · .
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2 contravariant and covariant right essential derived functor

2.1 Contravariant essential derived functor

In this subsection we want to describe contravariant right derived functor extnR on the
e-projective resolution call it essential derived functor (beriefly eext

R
n ) and discuss some

properties of them. On the other hand We present some definition that are central for
our object such as essential injective, essential projective and essential free modules as the
following:

Definition 2.1. An R-module E is an e-injective if it satisfies the following condition:
for any monic f1 : A1 → A2 and any map f2 : A1 → E, there exist 0 6= r ∈ R and
f3 : A2 → E such that f3 ◦ f1 = rf2.

E

0 A1 A2

f2

f1

f3

In this case, we say the map f3 is essentially extends to the map f2.

Definition 2.2. An R-module P is e-projective if it satisfies the following condition: for
any e-epic map f1 : A1 → A2 and any map f2 : P → A2, there exist 0 6= r ∈ R and
f3 : P → A1 such that f1 ◦ f3 = rf2.

P

A1 A2 0

f2
f3

f1

The following example shows that an e-projective module may not be projective.

Example 2.3. Consider the e-exact sequence

0 → 4Z f1→ Z f2→ Z
4Z

→ 0,

where f1(x) = 2x and f2(x) = 2x + 4Z is an e-split, because we have a map f : Z →
4Z, f(x) = 4x such that f ◦ f1(x) = f(f1(x)) = f(2x) = 8x = 8IZ. Thus we get Z/4Z is
an e-projective by[1, Proposition 3.2], while Z/4Z is not projective.
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Definition 2.4. A submodule S of M is an e-retract of M if there exist a map P : M →
S;P (s) = s for all s ∈ S called an e-retraction and 0 6= r ∈ R such that Pi = rIS, where
i : S → M is the inclusion.

Corollary 2.5. Let S be a torsion-free submodule of M . A submodule rS is a direct
summand of rM if there exist 0 6= r ∈ R and a retraction p : M → S

Proof. Let i : S → M be the inclusion we show that rM = rS ⊕ T , where T = rKerP .
If rm ∈ rM then rm = (rm − rpm) + rpm. Obviously, r(p(m − pm)) = p(rm − rpm) =
rpm−rppm = 0, because pm ∈ S and so ppm = pm, on the other hand rpm ∈ rImp = rS.
Therefore, rM = rS + T . If rm ∈ rS, then rpm = rm; if rm ∈ T = rKerp, then pm = 0.
Hence, if rm ∈ rS ∩ T , then m = 0. Therefore, rS ∩ T = 0 and rM = rS ⊕ T .

Proposition 2.6. Let P be a torsion-free submodule of A1. If a submodule rP is e-
projective, then every e-exact sequence ending with rP e-splits.

Proof. If rP is an e-projective then there exist j : rP → A1 and 0 6= r ∈ R such that
pj = rIrP . As the following diagram:

rP

A1 rP 0

IrP
j

p

By Corollary 2.5 the submodule rP is a direct summand of rA1, then the proof is complete
by using [3, Proposition 2.5]

Definition 2.7. Let M and eF be any R-module, 0 6= r ∈ R and X be a basis of eF . We
call eF is an e-free if for any map f : rX → M and inclusion map i : rX → eF there
exists a unique map g : eF → M such that g ◦ i = rf . In this case, we say g essentially
extend to f .

eF

rX M

g
i

f

Proposition 2.8. Let M be any R-module and X be a basis of a free module eF . Then
eF is an e-free-module.

Proof. By [9, Proposition 2.34], for any map f : X → M and inclusion map i : X → eF
there exists a unique map g : eF → M such that g ◦ i = rf since eF is a free module.
Therefore, there is an inclusion map h : rX →e F which is a composite of i ◦ p where
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p : rX → X be an inclusion map. Thus g ◦ h(rx) = g(h(rx)) = g(i ◦ p(rx)) = gi(p(rx)) =
gi(rx) = rgi(x) = rf(x) = f(rx) = f(p(rx)) = f ◦ p(rx).

In the above Proposition we showed that every free module is an e-free module, but the
converse is not true in general because, rX may not be a basis.

Theorem 2.9. A submodule rM of M is a quotient of an e-free R-module.

Proof. Let M be generated by the set X and eF be an e-free module with basis ux : x ∈ X,
then by definition there exist 0 6= r ∈ R and a map g : eF → M with g(rux) = rx for all
x ∈ X, so Img = rM is a submodule of M containing rX, implies rM ∼= eF

Kerg showing
as the following diagram:

eF

rux M

g
i

f

Theorem 2.10. Let eF be an e-free R-module. If p : A → A′′ is surjective, then for every
h : eF → A′′, there exist 0 6= r ∈ R and g : eF → A such that p ◦ g = rh.

Proof. Let X be a basis of eF . For each x ∈ X, h(rx) ∈ A′′ has the form h(rx) = p(rax) for
some ax ∈ A because p is surjective by the axiom of choice there is a function u : rX → A
with u(rx) = rax for all x ∈ X so by definition there exist a map g : eF → A with
g(rx) = rax for all x ∈ X. Now, p ◦ g(rx) = p(g(rx)) = p(rax) = h(rx).

Theorem 2.11. Let P torsion-free R-module. If a submodule rP is an e-projective then
rP is a direct summand of a submodule of an e-free R-module for 0 6= r ∈ R.

Proof. Assume that rP is an e-projective. By Theorem 2.9 rP is a quotient of an e-free
module eF . Thus there is an e-exact sequence 0 → kerg → eF

g→ rP → 0 which is an
e-split by Proposition 2.6. Therefore reF ∼= kerg ⊕ rP by [3, Proposition 2.5].

Definition 2.12. An e-projective resolution of an R−module A is an e-exact sequence
· · · → Pn+1 → Pn · · · → P1 → P0 → A → 0 where each Pn is an e-projective R-module.

Definition 2.13. If T is a contravariant functor, then

(RnT )A = Hn(TPA) =
KerTdn+1

ImTdn
,

where · · · → Pn+1 → Pn → · · · → P1 → P0 → A → 0 is the e-projective resolution
of an R-module A. In particular, we put T = Hom( , B), define eext

n
R( , B) = RnT .

Then eext
n
R(A,B) = Hn(HomR(PA, B)), which means eext

n
R = Kerdn

∗

Imd(n−1)∗ , where dn
∗
:

Hom(Pn−1, B) → Hom(Pn, B) is defined as usual by dn
∗
: f 7−→ fdn.
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Theorem 2.14. Let A be any R-modules. Then eext
n
R(A,B) = 0 for all negative integer

n.

Proof. Suppose that · · · → Pn+1 → Pn → · · · → P1 → P0 → A → 0 : P be an e-
projective resolution for A. Then the deleted complex of A is · · · → Pn+1 → Pn →
· · · → P1 → P0 → 0 : PA, after applying Hom( , B) on the deleted complex, we get
0 → Hom(P0, B) → Hom(P1, B) → Hom(P2, B) → · · · by [1, Theorem 2.7], which implies
that Hom(Pn, B) = 0 for all negative integer number n. Hence eext

n
R = 0 for all negative

integer number n.

Theorem 2.15. Let A be any R-modules and n = 0. Then eext
n
R(A,B) ∼= Hom(A,B)

Proof. Let · · · → Pn+1 → Pn → · · · → P1
d1→ P0

ϵ→ A → 0 be an e-projective resolution
for A. By definition

eext
0
R(A,B) = H0(Hom(PA, B)) =

Kerd∗1
Imd∗ϵ

= Kerd∗1.

But left e-exactness of Hom( , B) gives an e-exact sequence

0 → Hom(A,B)
ϵ∗→ Hom(P0, B)

d∗1→ Hom(P1, B)
d∗2→ Hom(P2, B) → · · ·

by [3, Proposition 2.7]. We define ϵ∗ : Hom(A,B) → Kerd∗1, since Imϵ∗ ⩽e Kerd∗1, ϵ∗ is
well-defined and since Hom( , B) is left e-exact functor then ϵ∗ is monic. Now, we want
to prove that ϵ∗ is an epic. Let f ∈ Kerd∗1 where f : P0 → B and g ∈ Hom(A,B),
then d∗1(f(p0)) = f(d1(p1)) by e-exactness there exist 0 6= r ∈ R and p0 ∈ kerϵ such
that d1(p1) = rp0 so rf(p0) = rgϵ(p0) = rϵ∗(g(a)) implies f(p0) = ϵ∗(g(a)). Hence
ϵ∗ is an isomorphism because, eext

n
R(A,B) = Kerd∗1 and eext

n
R(A,B) is isomorphic to

Hom(A,B).

Theorem 2.16. Let P be an e-projective, then eext
n
R(P,B) = 0, for all n ≥ 1

Proof. Since p is an e-projective, the e-projective resolution is 0 → P
1P→ P → 0 which

is 1p. The corresponding deleted e-projective resolution PP is 0 → P → 0. By applying
Hom( , B) to the deleted complex we obtain eext

n
R(P,B) = 0 for all n ≥ 1.

Corollary 2.17. Let 0 → A′ → A → A′′ → 0 be an e-exact sequence of R-modules ,
then there is a long e-exact sequence 0 → Hom(A′′, B) → Hom(A,B) → Hom(A′, B) →
eext

1
R(A

′′, B) → eext
1
R(A,B) → · · · .

Proof. By [2, Theorem 3.7], we have an e-exact sequence of deleted complexes 0 → P ′′
A′ →

PA → P ′
A′′ → 0 . If T = Hom( , B), then 0 → TP ′

A′′ → TPA → TP ′′
A′ → 0 is still e-

exact by [3, Proposition 2.7]. Then by [2, Theorem 3.2] we have an e-exact sequence 0 →
H0(Hom(P ′

A′′ , B)) → H0(Hom(PA, B)) → H0(Hom(P ′′
A′ , B)) → H1(Hom(P ′

A′′ , B)) →
H1(Hom(PA, B)) → · · · . By using the definition of eext

R
n , Theorem 2.15 and Theorem

2.14 we obtain an e-exact sequence 0 → Hom(A′′, B) → Hom(A,B) → Hom(A′, B) →
eext

1
R(A

′′, B) → eext
1
R(A,B) → · · · .
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Theorem 2.18. Given a commutative diagram of R-modules having e-exact rows as the
following:

0 A′ A A′′ 0

0 C ′ C C ′′ 0,

i

f

p

g h

j q

then there is a commutative diagram of R-modules with e-exact rows:

eext
n
R(A

′′, B) eext
n
R(A,B) eext

n
R(A

′, B) eext
n+1
R (A′′, B)

eext
n
R(C

′′, B) eext
n
R(C,B) eext

n
R(C

′, B) eext
n+1
R (C ′′, B)

p∗ i∗ σn

q∗
h∗

j∗

g∗

σ′n

f∗ h∗

Proof. By [2, Theorem 3.7], we have an e-exact sequence of deleted complexes 0 → P ′′
A′ →

PA → P ′
A′′ → 0 . If T = Hom( , B), then 0 → TP ′

A′′ → TPA → TP ′′
A′ → 0 is still e-exact

by [3, Proposition 2.7]. By [2, Remark 3.3] there is a commutative diagram of R-modules
and R-morphisms as the following

· · · → Hn−1(Hom(P ′′
A′′ , B) Hn−1(Hom(P ′′

A, B)) Hn(Hom(P ′′
A′ , B) . . .

· · · → Hn−1(Hom(P ′′
C′′ , B) Hn−1(Hom(P ′′

C , B)) Hn(Hom(P ′′
C′ , B)) . . .

i∗ σ

j∗

g∗

σ∗

h∗ f∗

and our proof will be complete by using the definition of eext
n
R(A,B) = Hn(Hom(PA, B)).

2.2 Covariant essential derived functor eExt

In this subsection we want to describe covariant right derived functor ExtnR on the e-
injective resolution call it covariant essential derived functor (breifly eExtRn ) and discuss
some properties of them and we prove some theorem under acceptable condition. In
homology extRn and ExtRn are equivalent but this is not the case for eext

R
n and eExtRn . We

begin with the following definition.

Definition 2.19. An e-injective resolution of an R−module A is an e-exact sequence
0 → A

η→ E0 d0→ E1 d1→ · · · → En dn→ En+1 → · · · , where each Ei is an e-injective
R-module. An e-injective resolution may not be injective see [3, Example 2.3].

Definition 2.20. If T is a covariant functor, then

(RnT )A = Hn(TEM ) =
KerTdn

ImTdn−1
,

where E : 0 → M → E0 d0→ E1 d1→ · · · is the e-injective resolution of an R-module M .
In particular, we put T = Hom(A, ), for any R-module A we define eExtnR(A, ) = RnT .
Then eExtnR(A,M) = Hn(HomR(A,E

M )), which means that eExtnR = Kerdn∗
Imdn−1

∗
, where

dn∗ : Hom(A,En) → Hom(A,En+1) is defined as usual by dn∗ : f 7−→ dnf.
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Theorem 2.21. Let E be an e-injective R-module. Then for any R-module A eExtnR(A,E)
= 0, for all n ≥ 1.

Proof. Since E is an e-injective module, the e-injective resolution of E is 0 → E
1E→ E → 0.

The corresponding deleted e-injective resolution EE is 0 → E → 0. By applying Hom(, E)
to the deleted complex we obtain eExtnR(A,E) = 0 for all n ≥ 1.

Corollary 2.22. Let 0 → A′′ → A → A′ → 0 be a short e-exact sequence of R-modules
and P be a projective module, then there is a long e-exact sequence 0 → Hom(P,A′′) →
Hom(P,A) → Hom(P,A′) → eExt1R(P,A

′′) → eExt1R(P,A) → · · · .

Proof. By [3, Proposition 2.10], we have an e-exact sequence of deleted complexes 0 →
E′′A′′ → EA → E′A′ → 0 . If T = Hom(P, ), then 0 → TE′A′′ → TEA → TE′′A′ → 0 is
still e-exact by [1, Theorem 3.1]. Then by [2, Theorem 3.2] we have an e-exact sequence
0 → H0(Hom(P,E′A′′

)) → H0(Hom(P,EA)) → H0(Hom(P,E′′A′
)) → H1(Hom(P,E′A′′

))
→ H1(Hom(P,EA)) → · · · . By using the definition of eExt and [2, Theorem 5.3] we obtain
an e-exact sequence 0 → Hom(P,A′′) → Hom(P,A) → Hom(P,A′) → eExt1R(P,A

′′) →
eExt1R(P,A) → · · · .

Theorem 2.23. Given a commutative diagram of R-modules having e-exact rows as the
following:

0 A′′ A A′ 0

0 C ′′ C C ′ 0,

i

f

p

g h

j q

then there is a commutative diagram of R-modules with e-exact rows:

eExtnR(P,A
′′) eExtnR(P,A) eExtnR(P,A

′) eExtn+1
R (P,A′′)

eExtnR(P,C
′′) eExtnR(P,C) eExtnR(P,C

′) eExtn+1
R (P,C ′′)

i∗

f∗

p∗

g∗

σn

h∗ f∗

j∗ q∗ σ′n

Proof. By [3, Proposition 2.10], we have an e-exact sequence of deleted complexes 0 →
E′A′′ → EA → E′′A′ → 0. If T = Hom(P, ), then 0 → TE′A′′ → TEA → TE′′A′ → 0 is
still e-exact by [1, Theorem 3.1]. By [2, Remark 3.3] there is a commutative diagram of
R-modules and R-morphisms as the following

· · · → Hn−1(Hom(P,E′A)) Hn−1(Hom(P,EA′
)) Hn(Hom(P,EA′′

)) . . .

· · · → Hn−1(Hom(P,E′C)) Hn−1(Hom(P,E′C′
)) Hn(Hom(P,EC′′

)) . . .

p∗

g∗

σ

h∗ f∗

q∗ σ′∗

and our proof will be complete by using the definition of eExtnR(P,A) = Hn(Hom(P,EA)).
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3 ideal transforms with respect to essential exact sequence

Throughout this section, R is assumed to be a principal ideal domain. All our work in
this section applies to two particular systems of ideals; the system of ideals β = (an)n∈N
and the system of ideals β = (an+ bn)n∈Nby [4, Example 3.12]. Then the ideal transforms
with respect to an ideal a is defined as Da = limn∈NHom(an, B). It is covariant R-linear
functor as well as it is left e-exact sequence because Hom(an, B) is a left e-exact sequence
and direct limit preserves e-exactness. If a system of ideal (an)n∈N is an inverse family of
ideals, then there is a natural equivalence lim−→n∈NHom( R

an , B) ∼= Γa(B) as well as we have
an natural equivalent between lim−→n∈N eext

i
R(

R
an , B) ∼= eH

i
a(B).

Theorem 3.1. For any torsion-free R-module B. The sequence 0 → Γa(B) → B →
Da(B) → H1

a(B) → 0 is an e-exact.

Proof. The sequence 0 → an → R → rR
an → 0, where 0 6= r ∈ R is an e-exact sequence.

By Corollary 2.17 induces a long e-exact sequences of eext
n
R( , B) modules since R is an

e-projective R-modules and Hom(R,B) is naturally isomorphic to B, then

0 → Hom(
rR

an
, B) → B → Hom(an, B) → eext

1
R(

rR

an
, B) → 0.

Now passing to direct limits, we get the following

0 → lim−→
n∈N

Hom(
rR

an
, B) → B → lim−→

n∈N
Hom(an, B) → lim−→

n∈N
eext

1
R(

rR

an
, B) → 0.

Then by using a natural equivalent induces the sequences e-exact sequence 0 → Γa(B) →
B → Da(B) → H1

a(B) → 0 is an e-exact.

Theorem 3.2. Let an be a torsion-free modules. Then Hom(an, B) is an e-injective.

Proof. To prove that Hom(an, B) is an e-injective, we show that
Hom(−,Hom(an, B)) is an e-exact functor. By the adjoint isomorphism theorem, this
functor is naturally isomorphic to Hom(an ⊗−, B) which is the composite Hom(−, B) ◦
(an ⊗ −). By [3, Proposition 2.10] Hom(−, B) is an e-exact functor and by [1, Theorem
2.10] an ⊗− is also e-exact, so their composite is again e-exact.

Theorem 3.3. For any torsion-free R-module B. There exists 0 6= r ∈ R such that
ϵ∗ : B → rDa(B) is an isomorphism if and only if Γa(B) = H1

a(B) = 0.

Proof. If ϵ∗ is an isomorphism then by e-exactness and definition of essential we get the
result. Conversely, suppose that Γa(B) = H1

a(B) = 0 then by e-exactness and definition
of essential we obtain Kerϵ∗ = 0 implies ϵ∗ is an monic. It is remain to shows that ϵ∗

is an epic. By Theorem 3.2 Da(B) is an e-injective and by [3, Proposition 2.8] there
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exists a homomorphism g : Imϵ∗ → Da(B) such that f3 ◦ g = rIDa(B) which means that
rDa(B) = Imϵ∗. Therefore, ϵ∗ is an isomorpism.

Da(B)

0 B Imϵ∗

ϵ∗

f1

f3

g

Theorem 3.4. Let eext
n
R(a

n, B) be an e-injective torsion-free modules. There exists
0 6= r ∈ R such that η : eext

n
R(a

n, B) → reext
n+1
R ( rRan , B) is an isomorphism.

Proof. By Corollary 2.17 induces a long e-exat sequences of eext
n
R and by e-exactness

and definition of essential we obtain Kerη = 0 implies η is an monic. It is remain to
shows that η is an epic. By [3, Proposition 2.8] there exists a homomorphism g : Imη →
eext

n+1
R ( rRan , B) such that f3◦g = rI

eext
n+1
R ( rR

an
,B) which means that reextn+1

R ( rRan , B) = Imη.
Therefore, η is an isomorpism.

eext
n+1
R ( rRan , B)

0 eext
n
R(a

n, B) Imη

η

f1

f3

g

Theorem 3.5. For any torsion-free R-module B, there is an e-exact sequences

0 → Dr(a+b)(B) → Da(B)
⊕

Db(B) → Da∩b(B) → rH2
aDr(a+b)(B)

→ rH2
aDa(B)

⊕
rH2

aDb(B) → rH2
aDa∩b(B) → · · · .

Proof. we have an e-exact sequences 0 → a∩ b → a
⊕

b → r(a
⊕

b)
a∩b → 0, where 0 6= r ∈ R.

By Corollary 2.17 induces a long e-exat sequences

0 →Hom(r(a+ b), B) → Hom(a,B)
⊕

Hom(b,B) → Hom(a ∩ b,B)

→eext
1
R(r(a+ b), B) → eext

1
R(a,B)

⊕
eext

1
R(a,B) → eext

1
R(a ∩ b,B)

→· · · .
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Now, passing to direct limits, we obtain the following

0 → lim−→
n∈N

Hom(r(a+ b), B) → lim−→
n∈N

Hom(a,B)
⊕

lim−→
n∈N

Hom(b,B)

→ lim−→
n∈N

Hom(a ∩ b,B) → lim−→
n∈N

eext
1(r(a+ b), B) → lim−→

n∈N
eext

1
R(a,B)⊕

lim−→
n∈N

eext
1
R(a,B) → lim−→

n∈N
eext

1
R(a ∩ b,B) → · · · ,

then by using a natural equivalent and Theorem 3.4 induces an e-exact sequences

0 → Dr(a+b)(B) → Da(B)
⊕

Db(B) → Da∩b(B) → reH
2
aDr(a+b)(B)

→ reH
2
aDa(B)

⊕
reH

2
aDb(B) → reH

2
aDa∩b(B) → · · · .
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